Flux2 / app.py
Opera8's picture
Update app.py
826d34e verified
import os
import gradio as gr
import numpy as np
import spaces
import torch
import random
import io
import base64
import json
from PIL import Image
from gradio_client import Client
from huggingface_hub import InferenceClient
from deep_translator import GoogleTranslator
from transformers import pipeline
from diffusers import Flux2Pipeline, Flux2Transformer2DModel
from datetime import date
# ==========================================
# 1. تنظیمات و پیکربندی سیستم (Configuration)
# ==========================================
# رنگ‌ها و تنظیمات ظاهری
USAGE_LIMIT = 5
DATA_FILE = "usage_data.json"
PREMIUM_PAGE_ID = '1149636'
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
device = "cuda" if torch.cuda.is_available() else "cpu"
# بارگذاری مدل تشخیص محتوای نامناسب (Safety Checker)
print("Loading Safety Checker...")
safety_classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection", device=-1)
# کلاینت‌های هوش مصنوعی
hf_client = InferenceClient(api_key=os.environ.get("HF_TOKEN"))
VLM_MODEL = "baidu/ERNIE-4.5-VL-424B-A47B-Base-PT"
# پرامپت‌های سیستمی برای بهبود متن
SYSTEM_PROMPT_TEXT_ONLY = """You are an expert prompt engineer for FLUX.2. Rewrite user prompts to be more descriptive while strictly preserving their core subject and intent. Add concrete visual specifics."""
SYSTEM_PROMPT_WITH_IMAGES = """You are FLUX.2 image-editing expert. Convert editing requests into one concise instruction (50-80 words)."""
# لیست کلمات ممنوعه (Strict Mode)
BANNED_WORDS = [
"nsfw", "nude", "naked", "sex", "porn", "erotic", "xxx", "18+", "adult",
"explicit", "uncensored", "sexual", "lewd", "sensual", "lust", "horny",
"breast", "breasts", "nipple", "nipples", "vagina", "pussy", "cunt",
"penis", "dick", "cock", "genital", "genitals", "groin", "pubic",
"ass", "butt", "buttocks", "anus", "anal", "rectum",
"intercourse", "masturbation", "orgasm", "blowjob", "bj", "cum", "sperm",
"ejaculation", "penetration", "fucking", "sucking", "licking",
"lingerie", "bikini", "swimwear", "underwear", "panties", "bra", "thong",
"topless", "bottomless", "undressed", "unclothed", "skimpy", "transparent",
"fetish", "bdsm", "bondage", "latex", "hentai", "ecchi", "ahegao",
"gore", "bloody", "blood", "kill", "murder", "dead", "torture", "abuse"
]
# ==========================================
# 2. بارگذاری مدل FLUX.2
# ==========================================
print("Loading FLUX.2 Pipeline...")
repo_id = "black-forest-labs/FLUX.2-dev"
dit = Flux2Transformer2DModel.from_pretrained(
repo_id,
subfolder="transformer",
torch_dtype=torch.bfloat16
)
pipe = Flux2Pipeline.from_pretrained(
repo_id,
text_encoder=None,
transformer=dit,
torch_dtype=torch.bfloat16
)
pipe.to(device)
# بهینه‌سازی ZeroGPU
spaces.aoti_blocks_load(pipe.transformer, "zerogpu-aoti/FLUX.2", variant="fa3")
# ==========================================
# 3. توابع کمکی (Helpers)
# ==========================================
def load_usage_data():
if os.path.exists(DATA_FILE):
try:
with open(DATA_FILE, 'r') as f:
return json.load(f)
except:
return {}
return {}
def save_usage_data(data):
try:
with open(DATA_FILE, 'w') as f:
json.dump(data, f)
except Exception as e:
print(f"Error saving data: {e}")
usage_data_cache = load_usage_data()
def is_image_nsfw(image):
if image is None: return False
try:
# اگر ورودی لیست گالری باشد، اولین تصویر را چک کن
img_to_check = image
if isinstance(image, list):
# هندل کردن فرمت گالری گرادیو
if len(image) > 0:
img_to_check = image[0][0] if isinstance(image[0], tuple) else image[0]
else:
return False
results = safety_classifier(img_to_check)
for result in results:
if result['label'] == 'nsfw' and result['score'] > 0.75:
return True
return False
except Exception as e:
print(f"Safety check error: {e}")
return False
def check_text_safety(text):
if not text: return True
text_lower = text.lower()
padded_text = f" {text_lower} "
for char in [".", ",", "!", "?", "-", "_", "(", ")", "[", "]", "{", "}"]:
padded_text = padded_text.replace(char, " ")
for word in BANNED_WORDS:
if f" {word} " in padded_text:
return False
return True
def translate_prompt(text):
if not text: return ""
try:
translated = GoogleTranslator(source='auto', target='en').translate(text)
return translated
except Exception as e:
print(f"Translation Error: {e}")
return text
def get_error_html(message):
return f"""<div style="background-color: #fee2e2; border: 1px solid #ef4444; color: #b91c1c; padding: 12px; border-radius: 8px; text-align: center; margin-bottom: 10px; font-weight: bold; display: flex; align-items: center; justify-content: center; gap: 8px;"><span style="font-size: 1.2em;">⛔</span>{message}</div>"""
def get_success_html(message):
return f"""<div style="background-color: #dcfce7; border: 1px solid #22c55e; color: #15803d; padding: 12px; border-radius: 8px; text-align: center; margin-bottom: 10px; font-weight: bold; display: flex; align-items: center; justify-content: center; gap: 8px;"><span style="font-size: 1.2em;">✅</span>{message}</div>"""
def get_quota_exceeded_html():
return """<div style="background: linear-gradient(135deg, #fffbeb 0%, #fef3c7 100%); border: 2px solid #f59e0b; padding: 20px; border-radius: 16px; text-align: center; box-shadow: 0 4px 15px rgba(245, 158, 11, 0.1);"><div style="font-size: 3rem; margin-bottom: 10px;">💎</div><h3 style="color: #92400e; margin: 0 0 10px 0; font-weight: 800;">اعتبار رایگان امروز تمام شد</h3><p style="color: #b45309; margin: 0; font-size: 0.95em;">شما از ۵ تصویر رایگان امروز استفاده کرده‌اید.<br>برای ساخت تصاویر نامحدود و حرفه‌ای، لطفا نسخه خود را ارتقا دهید.</p></div>"""
def get_user_record(fingerprint):
global usage_data_cache
if not fingerprint: return None
usage_data_cache = load_usage_data()
today_str = date.today().isoformat()
user_record = usage_data_cache.get(fingerprint)
if not user_record or user_record.get("last_reset") != today_str:
return {"count": 0, "last_reset": today_str}
return user_record
def consume_quota(fingerprint):
global usage_data_cache
today_str = date.today().isoformat()
usage_data_cache = load_usage_data()
user_record = usage_data_cache.get(fingerprint)
if not user_record or user_record.get("last_reset") != today_str:
user_record = {"count": 0, "last_reset": today_str}
user_record["count"] += 1
usage_data_cache[fingerprint] = user_record
save_usage_data(usage_data_cache)
return user_record["count"]
def check_initial_quota(fingerprint, subscription_status):
if not fingerprint: return gr.update(visible=True), gr.update(visible=False), None
if subscription_status == 'paid': return gr.update(visible=True), gr.update(visible=False), None
user_record = get_user_record(fingerprint)
current_usage = user_record["count"] if user_record else 0
if current_usage >= USAGE_LIMIT:
return gr.update(visible=False), gr.update(visible=True), get_quota_exceeded_html()
else:
return gr.update(visible=True), gr.update(visible=False), None
def image_to_data_uri(img):
buffered = io.BytesIO()
img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return f"data:image/png;base64,{img_str}"
def remote_text_encoder(prompts):
client = Client("multimodalart/mistral-text-encoder")
result = client.predict(prompt=prompts, api_name="/encode_text")
prompt_embeds = torch.load(result[0])
return prompt_embeds
def upsample_prompt_logic(prompt, image_list):
try:
if image_list and len(image_list) > 0:
system_content = SYSTEM_PROMPT_WITH_IMAGES
user_content = [{"type": "text", "text": prompt}]
for img in image_list:
data_uri = image_to_data_uri(img)
user_content.append({"type": "image_url", "image_url": {"url": data_uri}})
messages = [{"role": "system", "content": system_content}, {"role": "user", "content": user_content}]
else:
system_content = SYSTEM_PROMPT_TEXT_ONLY
messages = [{"role": "system", "content": system_content}, {"role": "user", "content": prompt}]
completion = hf_client.chat.completions.create(model=VLM_MODEL, messages=messages, max_tokens=1024)
return completion.choices[0].message.content
except Exception as e:
print(f"Upsampling failed: {e}")
return prompt
def get_duration(prompt_embeds, image_list, width, height, num_inference_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
num_images = 0 if image_list is None else len(image_list)
step_duration = 1 + 0.8 * num_images
return max(65, num_inference_steps * step_duration + 10)
# ==========================================
# 4. تابع اصلی GPU (Inference)
# ==========================================
@spaces.GPU(duration=get_duration)
def generate_image(prompt_embeds, image_list, width, height, num_inference_steps, guidance_scale, seed, progress=gr.Progress(track_tqdm=True)):
prompt_embeds = prompt_embeds.to(device)
generator = torch.Generator(device=device).manual_seed(seed)
pipe_kwargs = {
"prompt_embeds": prompt_embeds,
"image": image_list,
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
"generator": generator,
"width": width,
"height": height,
}
if progress: progress(0, desc="Starting generation...")
image = pipe(**pipe_kwargs).images[0]
return image
def infer(
prompt, input_images, seed, randomize_seed, width, height,
num_inference_steps, guidance_scale, prompt_upsampling,
fingerprint, subscription_status,
progress=gr.Progress(track_tqdm=True)
):
# 1. بررسی اعتبار قبل از شروع
if subscription_status != 'paid':
user_record = get_user_record(fingerprint)
if user_record and user_record["count"] >= USAGE_LIMIT:
return None, seed, get_quota_exceeded_html(), gr.update(visible=False), gr.update(visible=True)
# 2. بررسی‌های ایمنی (Safety Checks)
# الف) بررسی تصویر ورودی
image_list = None
if input_images is not None and len(input_images) > 0:
image_list = [item[0] for item in input_images]
if is_image_nsfw(image_list):
return None, seed, get_error_html("تصویر ورودی دارای محتوای نامناسب است."), gr.update(visible=True), gr.update(visible=False)
# ب) ترجمه و بررسی متن
progress(0.1, desc="Translating...")
english_prompt = translate_prompt(prompt)
if not check_text_safety(english_prompt):
return None, seed, get_error_html("متن درخواست شامل کلمات غیرمجاز است."), gr.update(visible=True), gr.update(visible=False)
# 3. کسر اعتبار (اگر کاربر رایگان است)
if subscription_status != 'paid':
consume_quota(fingerprint)
# 4. آماده‌سازی تنظیمات
if randomize_seed:
seed = random.randint(0, MAX_SEED)
try:
# Upsampling Prompt (Optional)
final_prompt = english_prompt
if prompt_upsampling:
progress(0.2, desc="Enhancing prompt...")
final_prompt = upsample_prompt_logic(english_prompt, image_list)
# Text Encoding (CPU/Network)
progress(0.3, desc="Encoding...")
prompt_embeds = remote_text_encoder(final_prompt)
# Generation (GPU)
progress(0.4, desc="Generating...")
result_image = generate_image(
prompt_embeds, image_list, width, height,
num_inference_steps, guidance_scale, seed, progress
)
# 5. بررسی تصویر خروجی
if is_image_nsfw(result_image):
return None, seed, get_error_html("تصویر تولید شده حاوی محتوای نامناسب بود."), gr.update(visible=True), gr.update(visible=False)
# 6. محاسبه اعتبار باقی‌مانده
user_record = get_user_record(fingerprint)
remaining = USAGE_LIMIT - user_record["count"] if user_record else 0
success_msg = f"تصویر با موفقیت ساخته شد."
if subscription_status != 'paid':
success_msg += f" (اعتبار باقی‌مانده امروز: {remaining})"
btn_run_update = gr.update(visible=True)
btn_upg_update = gr.update(visible=False)
if subscription_status != 'paid' and remaining <= 0:
btn_run_update = gr.update(visible=False)
btn_upg_update = gr.update(visible=True)
return result_image, seed, get_success_html(success_msg), btn_run_update, btn_upg_update
except Exception as e:
error_str = str(e)
if "quota" in error_str.lower() or "exceeded" in error_str.lower():
raise e # Raise to be caught by JS
return None, seed, get_error_html(f"خطا در پردازش: {error_str}"), gr.update(visible=True), gr.update(visible=False)
def update_dimensions_from_image(image_list):
if image_list is None or len(image_list) == 0:
return 1024, 1024
img = image_list[0][0]
img_width, img_height = img.size
aspect_ratio = img_width / img_height
if aspect_ratio >= 1:
new_width = 1024
new_height = int(1024 / aspect_ratio)
else:
new_height = 1024
new_width = int(1024 * aspect_ratio)
new_width = round(new_width / 8) * 8
new_height = round(new_height / 8) * 8
return max(256, min(1024, new_width)), max(256, min(1024, new_height))
# ==========================================
# 5. جاوااسکریپت و CSS (UI/UX)
# ==========================================
js_download_func = """
async (image) => {
if (!image) { alert("لطفاً ابتدا تصویر را تولید کنید."); return; }
let fileUrl = image.url;
if (fileUrl && !fileUrl.startsWith('http')) { fileUrl = window.location.origin + fileUrl; }
else if (!fileUrl && image.path) { fileUrl = window.location.origin + "/file=" + image.path; }
window.parent.postMessage({ type: 'DOWNLOAD_REQUEST', url: fileUrl }, '*');
}
"""
js_upgrade_func = """() => { window.parent.postMessage({ type: 'NAVIGATE_TO_PREMIUM' }, '*'); }"""
js_global_content = """
<script>
document.addEventListener('DOMContentLoaded', () => {
async function getBrowserFingerprint() {
const components = [navigator.userAgent, navigator.language, screen.colorDepth, screen.width + 'x' + screen.height, new Date().getTimezoneOffset()];
try {
const canvas = document.createElement('canvas');
const ctx = canvas.getContext('2d');
ctx.textBaseline = "top"; ctx.font = "14px 'Arial'"; ctx.textBaseline = "alphabetic";
ctx.fillStyle = "#f60"; ctx.fillRect(125, 1, 62, 20);
ctx.fillStyle = "#069"; ctx.fillText("Alpha_Flux_FP_v1", 2, 15);
components.push(canvas.toDataURL());
} catch (e) { components.push("canvas-err"); }
const str = components.join('~~~');
let hash = 0;
for (let i = 0; i < str.length; i++) { hash = ((hash << 5) - hash) + str.charCodeAt(i); hash |= 0; }
return 'fp_' + Math.abs(hash).toString(16);
}
function isUserPaid(userObject) {
const PREMIUM_PAGE_ID = '1149636';
if (userObject && userObject.isLogin && userObject.accessible_pages) {
if (Array.isArray(userObject.accessible_pages)) return userObject.accessible_pages.some(page => String(page) === String(PREMIUM_PAGE_ID));
}
return false;
}
function updateHiddenInputs(fingerprint, status) {
const fpInput = document.querySelector('#fingerprint_storage textarea');
const stInput = document.querySelector('#status_storage textarea');
if(fpInput && fingerprint && fpInput.value !== fingerprint) { fpInput.value = fingerprint; fpInput.dispatchEvent(new Event('input', { bubbles: true })); }
if(stInput && status && stInput.value !== status) { stInput.value = status; stInput.dispatchEvent(new Event('input', { bubbles: true })); }
}
function updateSubscriptionBadge(status) {
const badge = document.getElementById('user-sub-badge');
if (!badge) return;
if (status === 'paid') {
badge.innerHTML = '✨ اشتراک: <span style="color: #FFD700; font-weight: bold;">نامحدود (PRO)</span>';
badge.style.background = 'linear-gradient(45deg, #1e3a8a, #3b82f6)';
} else {
badge.innerHTML = '👤 اشتراک: <span style="color: #fff; font-weight: bold;">رایگان (۵ اعتبار روزانه)</span>';
badge.style.background = 'linear-gradient(45deg, #4b5563, #6b7280)';
}
badge.style.display = 'inline-block';
}
async function initUserIdentity() {
window.userFingerprint = await getBrowserFingerprint();
window.userStatus = 'free';
window.parent.postMessage({ type: 'REQUEST_USER_STATUS' }, '*');
updateSubscriptionBadge('free');
updateHiddenInputs(window.userFingerprint, window.userStatus);
setInterval(() => { if(window.userFingerprint) updateHiddenInputs(window.userFingerprint, window.userStatus || 'free'); }, 1500);
}
window.addEventListener('message', (event) => {
if (event.data && event.data.type === 'USER_STATUS_RESPONSE') {
try {
const userObject = typeof event.data.payload === 'string' ? JSON.parse(event.data.payload) : event.data.payload;
const status = isUserPaid(userObject) ? 'paid' : 'free';
window.userStatus = status;
updateSubscriptionBadge(status);
updateHiddenInputs(window.userFingerprint, status);
} catch (e) { console.error(e); }
}
});
initUserIdentity();
// GPU Quota Modal
window.retryGeneration = function() { document.getElementById('custom-quota-modal')?.remove(); document.getElementById('run-btn')?.click(); };
window.closeErrorModal = function() { document.getElementById('custom-quota-modal')?.remove(); };
const showQuotaModal = () => {
if (document.getElementById('custom-quota-modal')) return;
const modalHtml = `
<div id="custom-quota-modal" style="position: fixed; top: 0; left: 0; width: 100%; height: 100%; background: rgba(0,0,0,0.6); backdrop-filter: blur(5px); z-index: 99999; display: flex; align-items: center; justify-content: center; font-family: 'Vazirmatn', sans-serif;">
<div class="ip-reset-guide-container">
<div class="guide-header">
<h2>یک قدم تا ساخت تصاویر جدید</h2>
</div>
<div class="guide-content">
<p>برای ادامه ساخت تصویر، لطفاً طبق آموزش زیر IP خود را تغییر دهید (اینترنت را خاموش/روشن کنید یا VPN را قطع کنید) و سپس دکمه تلاش مجدد را بزنید.</p>
<div class="video-button-container">
<button onclick="parent.postMessage({ type: 'NAVIGATE_TO_URL', url: '#/nav/online/news/getSingle/1149635' }, '*')" class="elegant-video-button">
<span>دیدن ویدیو آموزشی</span>
</button>
</div>
</div>
<div class="guide-actions">
<button class="action-button back-button" onclick="window.closeErrorModal()">بازگشت</button>
<button class="action-button retry-button" onclick="window.retryGeneration()">تلاش مجدد</button>
</div>
</div>
</div>`;
document.body.insertAdjacentHTML('beforeend', modalHtml);
setTimeout(window.closeErrorModal, 15000);
};
setInterval(() => {
const potentialErrors = document.querySelectorAll('.toast-body, .error, .toast-wrap');
potentialErrors.forEach(el => {
const text = el.innerText || "";
if (text.toLowerCase().includes('quota') || text.toLowerCase().includes('exceeded')) {
showQuotaModal();
el.style.display = 'none';
const parent = el.closest('.toast-wrap');
if(parent) parent.style.display = 'none';
}
});
}, 100);
const forceLight = () => {
document.body.classList.remove('dark');
document.body.style.backgroundColor = '#f5f7fa';
document.body.style.color = '#333333';
};
forceLight(); setInterval(forceLight, 1000);
});
</script>
"""
css_code = """
<style>
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@300;400;500;700&display=swap');
:root, .dark, body, .gradio-container {
--body-background-fill: #f5f7fa !important;
--body-text-color: #1f2937 !important;
font-family: 'Vazirmatn', sans-serif !important;
}
.ip-reset-guide-container { text-align: right; direction: rtl; background: white; padding: 20px; border-radius: 16px; width: 90%; max-width: 420px; box-shadow: 0 20px 25px -5px rgba(0,0,0,0.1); }
.elegant-video-button { background: #fff; color: #667eea; border: 1px solid #e2e8f0; padding: 10px 20px; border-radius: 50px; cursor: pointer; font-weight: bold; margin-top: 10px; }
.guide-actions { display: flex; gap: 10px; margin-top: 20px; }
.action-button { flex: 1; padding: 10px; border-radius: 12px; border: none; cursor: pointer; font-weight: bold; }
.retry-button { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; }
.back-button { background: white; border: 1px solid #e2e8f0; }
#col-container { max-width: 1200px; margin: 0 auto; direction: rtl; text-align: right; padding: 30px; background: white; border-radius: 24px; box-shadow: 0 10px 40px -10px rgba(0,0,0,0.08); }
#badge-container { text-align: center; margin-bottom: 20px; height: 30px; }
#user-sub-badge { padding: 6px 16px; border-radius: 20px; font-size: 0.9em; color: white; display: none; }
.primary-btn { background: linear-gradient(135deg, #10b981 0%, #059669 100%) !important; color: white !important; font-size: 1.1em !important; border-radius: 14px !important; margin-top: 15px; border: none !important; }
.upgrade-btn { background: linear-gradient(135deg, #f59e0b 0%, #d97706 100%) !important; color: white !important; font-size: 1.1em !important; border-radius: 14px !important; margin-top: 15px; animation: pulse 2s infinite; border: none !important; }
@keyframes pulse { 0% { transform: scale(1); } 70% { transform: scale(1.02); } 100% { transform: scale(1); } }
footer { display: none !important; }
#fingerprint_storage, #status_storage { display: none !important; }
</style>
"""
# ==========================================
# 6. ساخت رابط کاربری (Gradio Blocks)
# ==========================================
# ******** این خط اصلاح شده است ********
with gr.Blocks() as demo:
gr.HTML(js_global_content + css_code)
fingerprint_box = gr.Textbox(elem_id="fingerprint_storage", visible=True)
status_box_input = gr.Textbox(elem_id="status_storage", visible=True)
with gr.Column(elem_id="col-container"):
gr.Markdown("# **ساخت تصویر با FLUX.2 (پیشرفته)**", elem_id="main-title")
gr.Markdown("با استفاده از مدل قدرتمند FLUX.2 متن فارسی خود را به تصاویر شگفت‌انگیز تبدیل کنید.", elem_id="main-description")
gr.HTML('<div id="badge-container"><span id="user-sub-badge"></span></div>')
with gr.Row():
with gr.Column():
with gr.Row():
prompt = gr.Text(
label="توصیف تصویر (به فارسی)",
show_label=True,
max_lines=3,
placeholder="یک منظره زیبا از...",
rtl=True
)
with gr.Accordion("بارگذاری تصویر (اختیاری برای ویرایش/ایده)", open=False):
input_images = gr.Gallery(
label="تصاویر ورودی",
type="pil",
columns=3,
rows=1,
height=200
)
status_box = gr.HTML(label="وضعیت")
run_button = gr.Button("✨ ساخت تصویر", variant="primary", elem_classes="primary-btn", elem_id="run-btn", visible=True)
upgrade_button = gr.Button("💎 خرید نسخه نامحدود", variant="primary", elem_classes="upgrade-btn", elem_id="upgrade-btn", visible=False)
with gr.Accordion("تنظیمات پیشرفته", open=False):
prompt_upsampling = gr.Checkbox(label="بهبود خودکار پرامپت (هوشمند)", value=True)
seed = gr.Slider(label="دانه تصادفی (Seed)", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Seed تصادفی", value=True)
with gr.Row():
width = gr.Slider(label="عرض (Width)", minimum=256, maximum=MAX_IMAGE_SIZE, step=8, value=1024)
height = gr.Slider(label="ارتفاع (Height)", minimum=256, maximum=MAX_IMAGE_SIZE, step=8, value=1024)
with gr.Row():
num_inference_steps = gr.Slider(label="تعداد مراحل (Steps)", minimum=1, maximum=50, step=1, value=28)
guidance_scale = gr.Slider(label="میزان وفاداری (Guidance)", minimum=1.0, maximum=10.0, step=0.1, value=3.5)
with gr.Column():
result = gr.Image(label="تصویر نهایی", show_label=True, interactive=False)
download_button = gr.Button("📥 دانلود تصویر", variant="secondary", elem_id="download-btn")
# اتصال رویدادها
# 1. آپدیت ابعاد بر اساس تصویر آپلودی
input_images.upload(
fn=update_dimensions_from_image,
inputs=[input_images],
outputs=[width, height]
)
# 2. بررسی اولیه اعتبار
fingerprint_box.change(
fn=check_initial_quota,
inputs=[fingerprint_box, status_box_input],
outputs=[run_button, upgrade_button, status_box]
)
# 3. اجرای مدل
run_button.click(
fn=infer,
inputs=[
prompt, input_images, seed, randomize_seed, width, height,
num_inference_steps, guidance_scale, prompt_upsampling,
fingerprint_box, status_box_input
],
outputs=[result, seed, status_box, run_button, upgrade_button]
)
# 4. دکمه‌های دانلود و ارتقا
upgrade_button.click(fn=None, js=js_upgrade_func)
download_button.click(fn=None, inputs=[result], js=js_download_func)
if __name__ == "__main__":
demo.queue(max_size=30).launch(show_error=True)