Spaces:
Sleeping
Sleeping
File size: 11,573 Bytes
b099c5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
import pandas as pd
import numpy as np
from pathlib import Path
from typing import Optional
import streamlit as st
import plotly.graph_objects as go
# -------------------
# Paths
# -------------------
BASE_DIR = Path(__file__).resolve().parents[1]
DATA_DIR = BASE_DIR / "data" / "processed"
METRICS_DIR = BASE_DIR / "metrics"
TEST_PATH = DATA_DIR / "test.csv"
BEST_MODELS_PATH = METRICS_DIR / "best_models.csv"
COMBINED_METRICS_PATH = METRICS_DIR / "combined_metrics.csv"
BASELINE_PRED_PATH = METRICS_DIR / "baseline_predictions.csv"
LGBM_PRED_PATH = METRICS_DIR / "lgbm_predictions.csv"
CHRONOS_PRED_PATH = METRICS_DIR / "chronos_predictions.csv"
DEMAND_PROFILE_PATH = METRICS_DIR / "demand_profile.csv" # ADI / CV2
BEST_MODEL_OVERALL_PATH = METRICS_DIR / "best_model_overall.csv"
# -------------------
# Cached loaders
# -------------------
@st.cache_data
def load_test() -> pd.DataFrame:
df = pd.read_csv(TEST_PATH)
# ensure date sorted & numeric if needed
return df.sort_values(["id", "date"]).reset_index(drop=True)
@st.cache_data
def load_best_models() -> pd.DataFrame:
return pd.read_csv(BEST_MODELS_PATH)
@st.cache_data
def load_best_model_overall() -> pd.DataFrame:
return pd.read_csv(BEST_MODEL_OVERALL_PATH)
@st.cache_data
def load_combined_metrics() -> pd.DataFrame:
return pd.read_csv(COMBINED_METRICS_PATH)
@st.cache_data
def load_predictions() -> tuple[pd.DataFrame, pd.DataFrame, pd.DataFrame]:
"""
Baselines: metrics/baseline_predictions.csv
columns: id, model, h, forecast
LightGBM: metrics/lgbm_predictions.csv
columns: id, h (optional), forecast (or similar)
Chronos2: metrics/chronos_predictions.csv
columns: id, h, q10/q50/q90 or 0.1/0.5/0.9 etc.
"""
# Baseline family (classical / Croston / theta / etc.)
df_base = pd.read_csv(BASELINE_PRED_PATH)
# LightGBM
df_lgbm = pd.read_csv(LGBM_PRED_PATH)
df_lgbm["model"] = "lightgbm"
# Chronos2
df_chronos = pd.read_csv(CHRONOS_PRED_PATH)
# Normalize Chronos forecast column → 'forecast'
if "q50" in df_chronos.columns:
df_chronos = df_chronos.rename(columns={"q50": "forecast"})
elif "0.5" in df_chronos.columns:
df_chronos = df_chronos.rename(columns={"0.5": "forecast"})
elif "predictions" in df_chronos.columns:
df_chronos = df_chronos.rename(columns={"predictions": "forecast"})
# Ensure an 'h' column exists for horizon ordering
if "h" not in df_chronos.columns:
# if no explicit horizon, infer by group order
df_chronos["h"] = df_chronos.groupby("id").cumcount() + 1
return df_base, df_lgbm, df_chronos
@st.cache_data
def load_demand_profile() -> Optional[pd.DataFrame]:
if DEMAND_PROFILE_PATH.exists():
return pd.read_csv(DEMAND_PROFILE_PATH)
return None
# -------------------
# Helper: align predictions to test dates
# -------------------
def align_with_test_dates(
test_df: pd.DataFrame,
pred_df: pd.DataFrame,
sku_id: str,
model_name: Optional[str] = None,
horizon_col: str = "h",
) -> pd.DataFrame:
"""
Align predictions for a given SKU (and optional model) to the dates in test_df.
Logic:
- Take all test rows for this SKU and sort by 'date'.
- Take all prediction rows for this SKU (and model, if given).
- For baselines/Chronos2: sort by horizon_col (e.g. 'h').
For LightGBM: sort by existing 'date' or index (we ignore its date values).
- Overwrite/add a 'date' column in predictions using the test dates (by position).
"""
# 1) Test horizon for this SKU
sku_test = test_df[test_df["id"] == sku_id].sort_values("date")
dates = sku_test["date"].values
# 2) Filter predictions
sku_pred = pred_df.copy()
if "id" in sku_pred.columns:
sku_pred = sku_pred[sku_pred["id"] == sku_id].copy()
if model_name is not None and "model" in sku_pred.columns:
sku_pred = sku_pred[sku_pred["model"] == model_name].copy()
if sku_pred.empty:
return sku_pred
# 3) Sort predictions by available structure
if horizon_col in sku_pred.columns:
# baselines / Chronos: use horizon 'h'
sku_pred = sku_pred.sort_values(horizon_col)
else:
# LightGBM: ignore whatever 'date' means, just use row order
if "date" in sku_pred.columns:
sku_pred = sku_pred.sort_values("date")
else:
sku_pred = sku_pred.sort_index()
sku_pred = sku_pred.reset_index(drop=True)
# 4) Map dates 1:1 by position
n = min(len(dates), len(sku_pred))
sku_pred = sku_pred.iloc[:n].copy()
sku_pred["date"] = dates[:n]
return sku_pred
# -------------------
# Helper: classify regime (for display)
# -------------------
def classify_regime(row, adi_thr: float = 1.32, cv2_thr: float = 0.49) -> str:
adi_class = "High" if row["ADI"] > adi_thr else "Low"
cv2_class = "High" if row["CV2"] > cv2_thr else "Low"
if adi_class == "Low" and cv2_class == "Low":
return "Low-Low (Smooth)"
if adi_class == "Low" and cv2_class == "High":
return "Low-High (Erratic)"
if adi_class == "High" and cv2_class == "Low":
return "High-Low (Intermittent)"
return "High-High (Lumpy)"
# -------------------
# Main app
# -------------------
def main() -> None:
st.set_page_config(
page_title="Forecast Sandbox Lite",
layout="wide",
)
st.title("Forecast Sandbox Lite — SKU Explorer")
st.caption("Interactive view of model selection, regime profile, and forecast vs actuals.")
# ---- load core data ----
test_df = load_test()
best_df = load_best_models()
best_model_overall = load_best_model_overall()
metrics_df = load_combined_metrics()
df_base, df_lgbm, df_chronos = load_predictions()
demand_prof = load_demand_profile()
skus = sorted(test_df["id"].unique())
selected_sku = st.selectbox("Select SKU", skus)
# ---- left: summary info ----
col_info, col_plot = st.columns([1, 2])
with col_info:
st.subheader("SKU Summary")
# best model
row_best = best_df[best_df["id"] == selected_sku]
if row_best.empty:
st.error("No best model found for this SKU.")
return
best_model = row_best["best_model"].iloc[0]
st.markdown(f"**Recommended Model:** `{best_model}`")
# metrics for this SKU
sku_metrics = (
metrics_df[metrics_df["id"] == selected_sku]
.sort_values("score")
.reset_index(drop=True)
)
best_row_metric = sku_metrics[sku_metrics["model"] == best_model].iloc[0]
st.markdown("**Model Performance (Score = MAE + |Bias|)**")
st.write(
{
"Score": round(best_row_metric["score"], 3),
"MAE": round(best_row_metric["mae"], 3),
"Bias": round(best_row_metric["bias"], 3),
}
)
# regime info (ADI / CV2) if available
if (
demand_prof is not None
and "ADI" in demand_prof.columns
and "CV2" in demand_prof.columns
):
row_prof = demand_prof[demand_prof["id"] == selected_sku]
if not row_prof.empty:
row_prof = row_prof.iloc[0]
regime_label = classify_regime(row_prof)
st.markdown("**Demand Regime (ADI–CV²):**")
st.write(
{
"ADI": round(row_prof["ADI"], 2),
"CV²": round(row_prof["CV2"], 2),
"Regime": regime_label,
}
)
st.markdown("---")
st.markdown("**All Models for This SKU**")
st.dataframe(
sku_metrics[["model", "mae", "bias", "score"]],
use_container_width=True,
height=300,
)
# ---- right: plot ----
with col_plot:
st.subheader("Actual vs Forecast")
sku_test = test_df[test_df["id"] == selected_sku].sort_values("date")
# ---- align predictions with test dates ----
if best_model == "lightgbm":
raw_pred = df_lgbm
sku_pred = align_with_test_dates(
test_df=test_df,
pred_df=raw_pred,
sku_id=selected_sku,
model_name=None, # df_lgbm already only has lightgbm
horizon_col="h", # will be ignored if missing
)
elif best_model == "chronos2":
raw_pred = df_chronos
sku_pred = align_with_test_dates(
test_df=test_df,
pred_df=raw_pred,
sku_id=selected_sku,
model_name=None, # chronos df keyed only by id + h
horizon_col="h",
)
else:
# Baseline predictions for this SKU & best model
raw_pred = df_base
sku_pred = align_with_test_dates(
test_df=test_df,
pred_df=raw_pred,
sku_id=selected_sku,
model_name=best_model,
horizon_col="h",
)
if sku_pred.empty:
st.error("No predictions found for this SKU/model combination.")
return
# ensure a 'forecast' column exists
if "forecast" not in sku_pred.columns:
for cand in ["y_pred", "prediction", "pred", "yhat"]:
if cand in sku_pred.columns:
sku_pred = sku_pred.rename(columns={cand: "forecast"})
break
if "forecast" not in sku_pred.columns:
st.error("Predictions for this SKU do not contain a 'forecast' column.")
return
sku_pred = sku_pred.sort_values("date")
# merge actual + forecast on aligned 'date'
merged = sku_test.merge(
sku_pred[["date", "forecast"]],
on="date",
how="left",
)
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=merged["date"],
y=merged["sales"],
mode="lines",
name="Actual",
)
)
fig.add_trace(
go.Scatter(
x=merged["date"],
y=merged["forecast"],
mode="lines+markers",
name=f"Forecast ({best_model})",
)
)
fig.update_layout(
xaxis_title="Date",
yaxis_title="Sales",
template="plotly_white",
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1,
),
)
st.plotly_chart(fig, use_container_width=True)
# download section
st.markdown("### Download Forecast Data")
csv = merged.to_csv(index=False).encode("utf-8")
st.download_button(
"Download CSV for this SKU",
data=csv,
file_name=f"{selected_sku}_forecast_vs_actual.csv",
mime="text/csv",
)
if __name__ == "__main__":
main()
|