File size: 5,847 Bytes
b099c5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# %%
import pandas as pd
import numpy as np

np.random.seed(42)

# 1. Load HF dataset and convert to pandas
raw_df = pd.read_parquet("data/raw/FreshRetailNet-50K/train.parquet")
df_fresh_eval = pd.read_parquet("data/raw/FreshRetailNet-50K/eval.parquet")


# %%
# raw_df = raw_df.head(2000)
# 2. Rename for cleanliness
df = raw_df.rename(columns={
    "dt": "date",
    "sale_amount": "sales",
    "first_category_id": "category_1",
    "second_category_id": "category_2",
    "third_category_id": "category_3",
    "holiday_flag": "holiday",
    "precpt": "precip",
    "avg_temperature": "temp",
    "avg_humidity": "humidity",
    "avg_wind_level": "wind_level",
})

df["date"] = pd.to_datetime(df["date"])

# 3. Build a stable SKU-ID like you did for M5
#    here: city–store–product triple → id
df["id"] = "CID" + df["city_id"].astype(str) + "_SID" + df["store_id"].astype(str) + "_PID" + df["product_id"].astype(str) + "_MGID" + \
    df["management_group_id"].astype(str) + "_CAT1" + df["category_1"].astype(str) + "-CAT2" + df["category_2"].astype(str) + "-CAT3" + df["category_3"].astype(str)

# %%
def extract_daily_features(row):
    hs = np.array(row["hours_sale"], dtype=float)        # length 24
    st = np.array(row["hours_stock_status"], dtype=int)  # 1 = out-of-stock

    sale_hours = (hs > 0).sum()
    sale_hour_ratio = sale_hours / 24.0

    stockout_hours = st.sum()
    stockout_hour_ratio = stockout_hours / 24.0
    avail_hour_ratio = 1.0 - stockout_hour_ratio
    
    return pd.Series({
        "sale_hours": sale_hours,
        "sale_hour_ratio": sale_hour_ratio,
        "stockout_hours": stockout_hours,
        "stockout_hour_ratio": stockout_hour_ratio,
        "avail_hour_ratio": avail_hour_ratio,
    })

daily_feats = df.apply(extract_daily_features, axis=1)
df = pd.concat([df, daily_feats], axis=1)


# %%
tidy_df = df[['id',
    "date",
    "city_id", "store_id", "product_id",
    "management_group_id", "category_1", "category_2", "category_3",
    "sales",
    "sale_hours", "sale_hour_ratio",
    "stockout_hours", "stockout_hour_ratio", "avail_hour_ratio",
    "stock_hour6_22_cnt",
    "discount", "holiday", "activity_flag",
    "precip", "temp", "humidity", "wind_level",
]].copy()

# %%
g = tidy_df.groupby("id")["sales"]

summary = g.agg(["mean", "std", "count"])
summary = summary.rename(columns={"count": "T"})

summary["N"] = g.apply(lambda x: (x > 0).sum())
summary["ADI"] = summary["T"] / summary["N"].replace(0, 1)
summary["CV2"] = (summary["std"] / summary["mean"].replace(0, 1)) ** 2

summary["ADI_class"] = np.where(summary["ADI"] > 1.32, "High", "Low")
summary["CV2_class"] = np.where(summary["CV2"] > 0.49, "High", "Low")
summary["regime"] = summary["ADI_class"] + "-" + summary["CV2_class"]


# %%
tidy_df = tidy_df.merge(summary, on="id", how="left")

# %%
tidy_high_high = tidy_df[tidy_df["regime"] == "High-High"]
tidy_low_high  = tidy_df[tidy_df["regime"] == "Low-High"]
tidy_high_low   = tidy_df[tidy_df["regime"] == "High-Low"]
tidy_low_low   = tidy_df[tidy_df["regime"] == "Low-Low"]

def sample_by_regime(df_regime: pd.DataFrame, num_ids_needed: int) -> pd.DataFrame:
    """

    Sample num_ids_needed unique IDs from df_regime and return all their history.

    """
    concat_df = []
    for i, sku_id in enumerate(df_regime["id"].unique()):
        if i < num_ids_needed:
            concat_df.append(df_regime[df_regime["id"] == sku_id])
        else:
            break
    if not concat_df:
        return pd.DataFrame(columns=df_regime.columns)
    return pd.concat(concat_df, ignore_index=True)

multiples = 3
df_high_high_sampled = sample_by_regime(tidy_high_high, 3 * multiples)
df_low_high_sampled  = sample_by_regime(tidy_low_high, 15 * multiples)
df_high_low_sampled   = sample_by_regime(tidy_high_low, 10 * multiples)
df_low_low_sampled   = sample_by_regime(tidy_low_low, 81 * multiples)
tidy_subset = pd.concat(
    [df_high_high_sampled, df_low_high_sampled, df_high_low_sampled, df_low_low_sampled],
    ignore_index=True
)

print(tidy_subset["regime"].value_counts())
print(tidy_subset["regime"].value_counts(normalize=True))


# %%
# Sort properly
tidy_subset = tidy_subset.sort_values(["id", "date"])

# Per-SKU day index (1..T within each id)
tidy_subset["day_idx"] = (
    tidy_subset
    .groupby("id")["date"]
    .rank(method="first")
    .astype(int)
)


# %%
# Sort properly
tidy_subset = tidy_subset.sort_values(["id", "date"])

# Per-SKU day index (1..T within each id)
tidy_subset["day_idx"] = (
    tidy_subset
    .groupby("id")["date"]
    .rank(method="first")
    .astype(int)
)


# %%
# a=b

# %%
# For 90-day series: use first 76 days as train, last 14 as test
HORIZON = 14
TRAIN_HORIZON_END = 90-HORIZON   # 90 - 28


train_df = tidy_subset[tidy_subset["day_idx"] <= TRAIN_HORIZON_END]
test_df  = tidy_subset[tidy_subset["day_idx"] > TRAIN_HORIZON_END]

# Inference input for LGBM (last 200 days equivalent; here min(200, series_len))
# For 90-day series you might just use last 62 or so; here we take last 62:
inference_input_df_lgbm = tidy_subset[
    tidy_subset["day_idx"] > (TRAIN_HORIZON_END - 62)
]

# %%
train_df.head()

train_df["sales"] = train_df["sales"] * 100
test_df["sales"] = test_df["sales"] * 100
inference_input_df_lgbm["sales"] = inference_input_df_lgbm["sales"] * 100
# %%
import os
os.makedirs("data/processed", exist_ok=True)

tidy_subset.to_csv("data/processed/freshretailnet_subset.csv", index=False)
train_df.to_csv("data/processed/train.csv", index=False)
test_df.to_csv("data/processed/test.csv", index=False)
inference_input_df_lgbm.to_csv(
    "data/processed/inference_input_df_lgbm.csv",
    index=False
)

# %%