from typing import Dict import warnings from pathlib import Path import pandas as pd from typing import Any from tqdm import tqdm import numpy as np from utils.metrics import mae, bias from statsforecast import StatsForecast from statsforecast.models import ( # Baselines Naive, SeasonalNaive, RandomWalkWithDrift, HistoricAverage, WindowAverage, # Exponential smoothing / Holt / Holt-Winters SimpleExponentialSmoothingOptimized, SeasonalExponentialSmoothingOptimized, Holt, HoltWinters, # Theta family Theta, OptimizedTheta, DynamicTheta, DynamicOptimizedTheta, # ARIMA # AutoARIMA, # Intermittent CrostonClassic, CrostonOptimized, CrostonSBA, ) ### ----- Configuration ----- ### TRAIN_DATA_PATH = Path("data/processed/train.csv") TEST_DATA_PATH = Path("data/processed/test.csv") METRICS_PATH = Path("metrics/baseline_metrics.csv") PREDICTIONS_PATH = Path("metrics/baseline_predictions.csv") ### ------------------------- ### HORIZON = 14 # Forecast horizon warnings.filterwarnings("ignore") # Adding type hints for better code clarity and numpy style comments for documentation def build_baseline_models( season_length: int = 7, window_size: int = 4, ) -> Dict[str, Any]: """Build a dictionary of baseline forecasting models. Parameters ---------- season_length : int, optional Seasonality length, by default 7 window_size : int, optional Window size for moving average models, by default 4 Returns ------- Dict[str, Any] Dictionary of baseline forecasting models """ models= { # ---------------------- # 1) Naive family # ---------------------- str(Naive().__class__.__name__): Naive(), str(SeasonalNaive(season_length=season_length).__class__.__name__): SeasonalNaive(season_length=season_length), str(RandomWalkWithDrift().__class__.__name__): RandomWalkWithDrift(), str(HistoricAverage().__class__.__name__): HistoricAverage(), str(WindowAverage(window_size=window_size).__class__.__name__): WindowAverage(window_size=window_size), # ---------------------- # 2) SES / Holt / Holt-Winters # ---------------------- # SES ~ simple exponential smoothing str(SimpleExponentialSmoothingOptimized().__class__.__name__): SimpleExponentialSmoothingOptimized(), str(SeasonalExponentialSmoothingOptimized(season_length=season_length).__class__.__name__): SeasonalExponentialSmoothingOptimized(season_length=season_length), # Holt: level + trend, no seasonality str(Holt().__class__.__name__): Holt(), str(HoltWinters( season_length=7, # e.g. weekly seasonality for daily data # or "multiplicative" ).__class__.__name__): HoltWinters( season_length=7, # e.g. weekly seasonality for daily data ), # ---------------------- # 3) Theta family # ---------------------- str(Theta().__class__.__name__): Theta(), str(OptimizedTheta().__class__.__name__): OptimizedTheta(), str(DynamicTheta().__class__.__name__): DynamicTheta(), str(DynamicOptimizedTheta().__class__.__name__): DynamicOptimizedTheta(), # ---------------------- # 4) ARIMA baseline # ---------------------- # str(AutoARIMA().__class__.__name__): AutoARIMA(season_length=season_length), # ---------------------- # 5) Intermittent demand # ---------------------- str(CrostonClassic().__class__.__name__): CrostonClassic(), str(CrostonSBA().__class__.__name__): CrostonSBA(), str(CrostonOptimized().__class__.__name__): CrostonOptimized(), } return models # Adding type hints for better code clarity and numpy style comments for documentation def compute_baseline_forecasts( df: pd.DataFrame, models: Dict[str, Any], horizon: int = HORIZON, ) -> pd.DataFrame: """ df: train dataframe with columns ['id', 'date', 'sales'] returns: long dataframe with columns ['id', 'model', 'h', 'forecast'] """ results = [] sku_ids = df['id'].unique() for sku_id in tqdm(sku_ids): sku_data = df[df['id'] == sku_id].sort_values('date').copy() if len(sku_data) <= horizon + 5: continue sku_data.rename(columns={'sales': 'y', 'id': 'unique_id'}, inplace=True) # dummy calendar for StatsForecast — only order matters sku_data['ds'] = pd.date_range(start='2021-01-01', periods=len(sku_data), freq='D') sku_data = sku_data[['unique_id', 'ds', 'y']] for model_name, model in models.items(): sf = StatsForecast(models=[model], freq='D', n_jobs=1) sf.fit(sku_data) forecast_df = sf.predict(h=horizon) # StatsForecast sometimes uses short aliases for columns # map model_name → column name col_map = { "RandomWalkWithDrift": "RWD", "SimpleExponentialSmoothingOptimized": "SESOpt", "SeasonalExponentialSmoothingOptimized": "SeasESOpt", } col = col_map.get(model_name, model.__class__.__name__) if col not in forecast_df.columns: raise ValueError(f"Column {col} not found for model {model_name}") forecast_values = forecast_df[col].values for step in range(horizon): results.append({ "id": sku_id, "model": model_name, "h": step + 1, "forecast": float(forecast_values[step]), }) return pd.DataFrame(results) def compute_metrics( test_df: pd.DataFrame, forecasts_df: pd.DataFrame, horizon: int = HORIZON, ) -> pd.DataFrame: """ test_df: ['id', 'date', 'sales', ...] forecasts_df: ['id', 'model', 'h', 'forecast'] returns: ['id', 'model', 'mae', 'bias', 'score'] """ test_df = test_df.sort_values(["id", "date"]).copy() # assign step index 1..H per SKU in time order test_df["h"] = test_df.groupby("id").cumcount() + 1 metrics_rows = [] for (sku_id, model_name), g_fore in forecasts_df.groupby(["id", "model"]): g_test = test_df[test_df["id"] == sku_id].copy() if g_test["h"].max() < horizon: # test shorter than horizon for some reason continue # align on h merged = pd.merge( g_test[["id", "h", "sales"]], g_fore[["id", "h", "forecast"]], on=["id", "h"], how="inner", ) if merged.empty: continue y_true = merged["sales"].values y_pred = merged["forecast"].values m = mae(y_true, y_pred) b = bias(y_true, y_pred) s = m + abs(b) metrics_rows.append({ "id": sku_id, "model": model_name, "mae": float(m), "bias": float(b), "score": float(s), }) return pd.DataFrame(metrics_rows) if __name__ == "__main__": # Load data train_df = pd.read_csv(TRAIN_DATA_PATH) test_df = pd.read_csv(TEST_DATA_PATH) # Build baseline models baseline_models = build_baseline_models() # Forecast from train into test horizon train_forecasts = compute_baseline_forecasts(train_df, baseline_models, horizon=HORIZON) # Save raw forecasts (for later UI) PREDICTIONS_PATH.parent.mkdir(parents=True, exist_ok=True) train_forecasts.to_csv(PREDICTIONS_PATH, index=False) # Compute metrics vs test metrics_df = compute_metrics(test_df, train_forecasts, horizon=HORIZON) metrics_df.to_csv(METRICS_PATH, index=False) print("Saved:") print(f" - forecasts → {PREDICTIONS_PATH}") print(f" - metrics → {METRICS_PATH}")