import numpy as np # Adding type hints for better code clarity and numpy style comments for documentation def mae(y_true: np.ndarray, y_pred: np.ndarray) -> float: """Mean Absolute Error Parameters ---------- y_true : np.ndarray True values y_pred : np.ndarray Predicted values Returns ------- float Mean Absolute Error """ y_true = np.array(y_true) y_pred = np.array(y_pred) return np.mean(np.abs(y_true - y_pred)) def bias(y_true: np.ndarray, y_pred: np.ndarray) -> float: """Bias Parameters ---------- y_true : np.ndarray True values y_pred : np.ndarray Predicted values Returns ------- float Bias """ y_true = np.array(y_true) y_pred = np.array(y_pred) return np.mean(y_pred - y_true)