File size: 9,655 Bytes
a42ebba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import importlib.metadata
import torch
import logging
from tqdm import tqdm
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
log = logging.getLogger(__name__)

from accelerate.utils import set_module_tensor_to_device
def check_diffusers_version():
    try:
        version = importlib.metadata.version('diffusers')
        required_version = '0.31.0'
        if version < required_version:
            raise AssertionError(f"diffusers version {version} is installed, but version {required_version} or higher is required.")
    except importlib.metadata.PackageNotFoundError:
        raise AssertionError("diffusers is not installed.")

def print_memory(device):
    memory = torch.cuda.memory_allocated(device) / 1024**3
    max_memory = torch.cuda.max_memory_allocated(device) / 1024**3
    max_reserved = torch.cuda.max_memory_reserved(device) / 1024**3
    log.info(f"Allocated memory: {memory=:.3f} GB")
    log.info(f"Max allocated memory: {max_memory=:.3f} GB")
    log.info(f"Max reserved memory: {max_reserved=:.3f} GB")
    #memory_summary = torch.cuda.memory_summary(device=device, abbreviated=False)
    #log.info(f"Memory Summary:\n{memory_summary}")

def get_module_memory_mb(module):
    memory = 0
    for param in module.parameters():
        if param.data is not None:
            memory += param.nelement() * param.element_size()
    return memory / (1024 * 1024)  # Convert to MB

def apply_lora(model, device_to, transformer_load_device, params_to_keep=None, dtype=None, base_dtype=None, state_dict=None, low_mem_load=False):
        to_load = []
        for n, m in model.model.named_modules():
            params = []
            skip = False
            for name, param in m.named_parameters(recurse=False):
                params.append(name)
            for name, param in m.named_parameters(recurse=True):
                if name not in params:
                    skip = True # skip random weights in non leaf modules
                    break
            if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
                to_load.append((n, m, params))

        to_load.sort(reverse=True)
        for x in tqdm(to_load, desc="Loading model and applying LoRA weights:", leave=True):
            name = x[0]
            m = x[1]
            params = x[2]
            if hasattr(m, "comfy_patched_weights"):
                if m.comfy_patched_weights == True:
                    continue
            for param in params:
                name = name.replace("._orig_mod.", ".") # torch compiled modules have this prefix
                if low_mem_load:
                    dtype_to_use = base_dtype if any(keyword in name for keyword in params_to_keep) else dtype
                    if "patch_embedding" in name:
                        dtype_to_use = torch.float32
                    if name.startswith("diffusion_model."):
                        name_no_prefix = name[len("diffusion_model."):]
                    key = "{}.{}".format(name_no_prefix, param)
                    try:
                        set_module_tensor_to_device(model.model.diffusion_model, key, device=transformer_load_device, dtype=dtype_to_use, value=state_dict[key])
                    except:
                        continue
                model.patch_weight_to_device("{}.{}".format(name, param), device_to=device_to)
                if low_mem_load:
                    try:
                        set_module_tensor_to_device(model.model.diffusion_model, key, device=transformer_load_device, dtype=dtype_to_use, value=model.model.diffusion_model.state_dict()[key])
                    except:
                        continue
            m.comfy_patched_weights = True
      
        model.current_weight_patches_uuid = model.patches_uuid
        if low_mem_load:
            for name, param in model.model.diffusion_model.named_parameters():
                if param.device != transformer_load_device:
                    dtype_to_use = base_dtype if any(keyword in name for keyword in params_to_keep) else dtype
                    if "patch_embedding" in name:
                        dtype_to_use = torch.float32
                    try:
                        set_module_tensor_to_device(model.model.diffusion_model, name, device=transformer_load_device, dtype=dtype_to_use, value=state_dict[name])
                    except:
                        continue
        return model


# from https://github.com/cubiq/ComfyUI_IPAdapter_plus/blob/9d076a3df0d2763cef5510ec5ab807f6632c39f5/utils.py#L181
def split_tiles(embeds, num_split):
    _, H, W, _ = embeds.shape
    out = []
    for x in embeds:
        x = x.unsqueeze(0)
        h, w = H // num_split, W // num_split
        x_split = torch.cat([x[:, i*h:(i+1)*h, j*w:(j+1)*w, :] for i in range(num_split) for j in range(num_split)], dim=0)    
        out.append(x_split)
    
    x_split = torch.stack(out, dim=0)
    
    return x_split

def merge_hiddenstates(x, tiles):
    chunk_size = tiles*tiles
    x = x.split(chunk_size)

    out = []
    for embeds in x:
        num_tiles = embeds.shape[0]
        tile_size = int((embeds.shape[1]-1) ** 0.5)
        grid_size = int(num_tiles ** 0.5)

        # Extract class tokens
        class_tokens = embeds[:, 0, :]  # Save class tokens: [num_tiles, embeds[-1]]
        avg_class_token = class_tokens.mean(dim=0, keepdim=True).unsqueeze(0)  # Average token, shape: [1, 1, embeds[-1]]

        patch_embeds = embeds[:, 1:, :]  # Shape: [num_tiles, tile_size^2, embeds[-1]]
        reshaped = patch_embeds.reshape(grid_size, grid_size, tile_size, tile_size, embeds.shape[-1])

        merged = torch.cat([torch.cat([reshaped[i, j] for j in range(grid_size)], dim=1) 
                            for i in range(grid_size)], dim=0)
        
        merged = merged.unsqueeze(0)  # Shape: [1, grid_size*tile_size, grid_size*tile_size, embeds[-1]]
        
        # Pool to original size
        pooled = torch.nn.functional.adaptive_avg_pool2d(merged.permute(0, 3, 1, 2), (tile_size, tile_size)).permute(0, 2, 3, 1)
        flattened = pooled.reshape(1, tile_size*tile_size, embeds.shape[-1])
        
        # Add back the class token
        with_class = torch.cat([avg_class_token, flattened], dim=1)  # Shape: original shape
        out.append(with_class)
    
    out = torch.cat(out, dim=0)

    return out

from comfy.clip_vision import clip_preprocess, ClipVisionModel

def clip_encode_image_tiled(clip_vision, image, tiles=1, ratio=1.0):
    embeds = encode_image_(clip_vision, image)
    tiles = min(tiles, 16)

    if tiles > 1:
        # split in tiles
        image_split = split_tiles(image, tiles)

        # get the embeds for each tile
        embeds_split = {}
        for i in image_split:
            encoded = encode_image_(clip_vision, i)
            if not hasattr(embeds_split, "last_hidden_state"):
                embeds_split["last_hidden_state"] = encoded
            else:
                embeds_split["last_hidden_state"] = torch.cat(embeds_split["last_hidden_state"], encoded, dim=0)

        embeds_split['last_hidden_state'] = merge_hiddenstates(embeds_split['last_hidden_state'], tiles)

        if embeds.shape[0] > 1: # if we have more than one image we need to average the embeddings for consistency
            embeds = embeds * ratio + embeds_split['last_hidden_state']*(1-ratio)
        else: # otherwise we can concatenate them, they can be averaged later
            embeds = torch.cat([embeds * ratio, embeds_split['last_hidden_state']])

    return embeds

def encode_image_(clip_vision, image):
    if isinstance(clip_vision, ClipVisionModel):
        out = clip_vision.encode_image(image).last_hidden_state
    else:
        pixel_values = clip_preprocess(image, size=224, crop=True).float()
        out = clip_vision.visual(pixel_values)

    return out

# Code based on https://github.com/WikiChao/FreSca (MIT License)
import torch
import torch.fft as fft

def fourier_filter(x, scale_low=1.0, scale_high=1.5, freq_cutoff=20):
    """
    Apply frequency-dependent scaling to an image tensor using Fourier transforms.

    Parameters:
        x:           Input tensor of shape (B, C, H, W)
        scale_low:   Scaling factor for low-frequency components (default: 1.0)
        scale_high:  Scaling factor for high-frequency components (default: 1.5)
        freq_cutoff: Number of frequency indices around center to consider as low-frequency (default: 20)

    Returns:
        x_filtered: Filtered version of x in spatial domain with frequency-specific scaling applied.
    """
    # Preserve input dtype and device
    dtype, device = x.dtype, x.device

    # Convert to float32 for FFT computations
    x = x.to(torch.float32)

    # 1) Apply FFT and shift low frequencies to center
    x_freq = fft.fftn(x, dim=(-2, -1))
    x_freq = fft.fftshift(x_freq, dim=(-2, -1))

    # 2) Create a mask to scale frequencies differently
    C, B, H, W = x_freq.shape
    crow, ccol = H // 2, W // 2

    # Initialize mask with high-frequency scaling factor
    mask = torch.ones((C, B, H, W), device=device) * scale_high

    # Apply low-frequency scaling factor to center region
    mask[
        ...,
        crow - freq_cutoff : crow + freq_cutoff,
        ccol - freq_cutoff : ccol + freq_cutoff,
    ] = scale_low

    # 3) Apply frequency-specific scaling
    x_freq = x_freq * mask

    # 4) Convert back to spatial domain
    x_freq = fft.ifftshift(x_freq, dim=(-2, -1))
    x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real

    # 5) Restore original dtype
    x_filtered = x_filtered.to(dtype)

    return x_filtered