Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,655 Bytes
a42ebba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import importlib.metadata
import torch
import logging
from tqdm import tqdm
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
log = logging.getLogger(__name__)
from accelerate.utils import set_module_tensor_to_device
def check_diffusers_version():
try:
version = importlib.metadata.version('diffusers')
required_version = '0.31.0'
if version < required_version:
raise AssertionError(f"diffusers version {version} is installed, but version {required_version} or higher is required.")
except importlib.metadata.PackageNotFoundError:
raise AssertionError("diffusers is not installed.")
def print_memory(device):
memory = torch.cuda.memory_allocated(device) / 1024**3
max_memory = torch.cuda.max_memory_allocated(device) / 1024**3
max_reserved = torch.cuda.max_memory_reserved(device) / 1024**3
log.info(f"Allocated memory: {memory=:.3f} GB")
log.info(f"Max allocated memory: {max_memory=:.3f} GB")
log.info(f"Max reserved memory: {max_reserved=:.3f} GB")
#memory_summary = torch.cuda.memory_summary(device=device, abbreviated=False)
#log.info(f"Memory Summary:\n{memory_summary}")
def get_module_memory_mb(module):
memory = 0
for param in module.parameters():
if param.data is not None:
memory += param.nelement() * param.element_size()
return memory / (1024 * 1024) # Convert to MB
def apply_lora(model, device_to, transformer_load_device, params_to_keep=None, dtype=None, base_dtype=None, state_dict=None, low_mem_load=False):
to_load = []
for n, m in model.model.named_modules():
params = []
skip = False
for name, param in m.named_parameters(recurse=False):
params.append(name)
for name, param in m.named_parameters(recurse=True):
if name not in params:
skip = True # skip random weights in non leaf modules
break
if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
to_load.append((n, m, params))
to_load.sort(reverse=True)
for x in tqdm(to_load, desc="Loading model and applying LoRA weights:", leave=True):
name = x[0]
m = x[1]
params = x[2]
if hasattr(m, "comfy_patched_weights"):
if m.comfy_patched_weights == True:
continue
for param in params:
name = name.replace("._orig_mod.", ".") # torch compiled modules have this prefix
if low_mem_load:
dtype_to_use = base_dtype if any(keyword in name for keyword in params_to_keep) else dtype
if "patch_embedding" in name:
dtype_to_use = torch.float32
if name.startswith("diffusion_model."):
name_no_prefix = name[len("diffusion_model."):]
key = "{}.{}".format(name_no_prefix, param)
try:
set_module_tensor_to_device(model.model.diffusion_model, key, device=transformer_load_device, dtype=dtype_to_use, value=state_dict[key])
except:
continue
model.patch_weight_to_device("{}.{}".format(name, param), device_to=device_to)
if low_mem_load:
try:
set_module_tensor_to_device(model.model.diffusion_model, key, device=transformer_load_device, dtype=dtype_to_use, value=model.model.diffusion_model.state_dict()[key])
except:
continue
m.comfy_patched_weights = True
model.current_weight_patches_uuid = model.patches_uuid
if low_mem_load:
for name, param in model.model.diffusion_model.named_parameters():
if param.device != transformer_load_device:
dtype_to_use = base_dtype if any(keyword in name for keyword in params_to_keep) else dtype
if "patch_embedding" in name:
dtype_to_use = torch.float32
try:
set_module_tensor_to_device(model.model.diffusion_model, name, device=transformer_load_device, dtype=dtype_to_use, value=state_dict[name])
except:
continue
return model
# from https://github.com/cubiq/ComfyUI_IPAdapter_plus/blob/9d076a3df0d2763cef5510ec5ab807f6632c39f5/utils.py#L181
def split_tiles(embeds, num_split):
_, H, W, _ = embeds.shape
out = []
for x in embeds:
x = x.unsqueeze(0)
h, w = H // num_split, W // num_split
x_split = torch.cat([x[:, i*h:(i+1)*h, j*w:(j+1)*w, :] for i in range(num_split) for j in range(num_split)], dim=0)
out.append(x_split)
x_split = torch.stack(out, dim=0)
return x_split
def merge_hiddenstates(x, tiles):
chunk_size = tiles*tiles
x = x.split(chunk_size)
out = []
for embeds in x:
num_tiles = embeds.shape[0]
tile_size = int((embeds.shape[1]-1) ** 0.5)
grid_size = int(num_tiles ** 0.5)
# Extract class tokens
class_tokens = embeds[:, 0, :] # Save class tokens: [num_tiles, embeds[-1]]
avg_class_token = class_tokens.mean(dim=0, keepdim=True).unsqueeze(0) # Average token, shape: [1, 1, embeds[-1]]
patch_embeds = embeds[:, 1:, :] # Shape: [num_tiles, tile_size^2, embeds[-1]]
reshaped = patch_embeds.reshape(grid_size, grid_size, tile_size, tile_size, embeds.shape[-1])
merged = torch.cat([torch.cat([reshaped[i, j] for j in range(grid_size)], dim=1)
for i in range(grid_size)], dim=0)
merged = merged.unsqueeze(0) # Shape: [1, grid_size*tile_size, grid_size*tile_size, embeds[-1]]
# Pool to original size
pooled = torch.nn.functional.adaptive_avg_pool2d(merged.permute(0, 3, 1, 2), (tile_size, tile_size)).permute(0, 2, 3, 1)
flattened = pooled.reshape(1, tile_size*tile_size, embeds.shape[-1])
# Add back the class token
with_class = torch.cat([avg_class_token, flattened], dim=1) # Shape: original shape
out.append(with_class)
out = torch.cat(out, dim=0)
return out
from comfy.clip_vision import clip_preprocess, ClipVisionModel
def clip_encode_image_tiled(clip_vision, image, tiles=1, ratio=1.0):
embeds = encode_image_(clip_vision, image)
tiles = min(tiles, 16)
if tiles > 1:
# split in tiles
image_split = split_tiles(image, tiles)
# get the embeds for each tile
embeds_split = {}
for i in image_split:
encoded = encode_image_(clip_vision, i)
if not hasattr(embeds_split, "last_hidden_state"):
embeds_split["last_hidden_state"] = encoded
else:
embeds_split["last_hidden_state"] = torch.cat(embeds_split["last_hidden_state"], encoded, dim=0)
embeds_split['last_hidden_state'] = merge_hiddenstates(embeds_split['last_hidden_state'], tiles)
if embeds.shape[0] > 1: # if we have more than one image we need to average the embeddings for consistency
embeds = embeds * ratio + embeds_split['last_hidden_state']*(1-ratio)
else: # otherwise we can concatenate them, they can be averaged later
embeds = torch.cat([embeds * ratio, embeds_split['last_hidden_state']])
return embeds
def encode_image_(clip_vision, image):
if isinstance(clip_vision, ClipVisionModel):
out = clip_vision.encode_image(image).last_hidden_state
else:
pixel_values = clip_preprocess(image, size=224, crop=True).float()
out = clip_vision.visual(pixel_values)
return out
# Code based on https://github.com/WikiChao/FreSca (MIT License)
import torch
import torch.fft as fft
def fourier_filter(x, scale_low=1.0, scale_high=1.5, freq_cutoff=20):
"""
Apply frequency-dependent scaling to an image tensor using Fourier transforms.
Parameters:
x: Input tensor of shape (B, C, H, W)
scale_low: Scaling factor for low-frequency components (default: 1.0)
scale_high: Scaling factor for high-frequency components (default: 1.5)
freq_cutoff: Number of frequency indices around center to consider as low-frequency (default: 20)
Returns:
x_filtered: Filtered version of x in spatial domain with frequency-specific scaling applied.
"""
# Preserve input dtype and device
dtype, device = x.dtype, x.device
# Convert to float32 for FFT computations
x = x.to(torch.float32)
# 1) Apply FFT and shift low frequencies to center
x_freq = fft.fftn(x, dim=(-2, -1))
x_freq = fft.fftshift(x_freq, dim=(-2, -1))
# 2) Create a mask to scale frequencies differently
C, B, H, W = x_freq.shape
crow, ccol = H // 2, W // 2
# Initialize mask with high-frequency scaling factor
mask = torch.ones((C, B, H, W), device=device) * scale_high
# Apply low-frequency scaling factor to center region
mask[
...,
crow - freq_cutoff : crow + freq_cutoff,
ccol - freq_cutoff : ccol + freq_cutoff,
] = scale_low
# 3) Apply frequency-specific scaling
x_freq = x_freq * mask
# 4) Convert back to spatial domain
x_freq = fft.ifftshift(x_freq, dim=(-2, -1))
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real
# 5) Restore original dtype
x_filtered = x_filtered.to(dtype)
return x_filtered |