Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import time
|
| 5 |
+
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import re
|
| 8 |
+
import time
|
| 9 |
+
import os
|
| 10 |
+
|
| 11 |
+
import whisper
|
| 12 |
+
from pytube import YouTube
|
| 13 |
+
|
| 14 |
+
import psutil
|
| 15 |
+
num_cores = psutil.cpu_count()
|
| 16 |
+
os.environ["OMP_NUM_THREADS"] = f"{num_cores}"
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
import torch
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# is cuda available?
|
| 23 |
+
|
| 24 |
+
from easynmt import EasyNMT
|
| 25 |
+
translation_model = EasyNMT('m2m_100_418M', max_new_tokens=60)
|
| 26 |
+
|
| 27 |
+
asr_model = whisper.load_model("base")
|
| 28 |
+
transcribe_options = dict(beam_size=3, best_of=3, without_timestamps=False)
|
| 29 |
+
|
| 30 |
+
translation_models = {
|
| 31 |
+
"Afrikaans":"af",
|
| 32 |
+
"Amharic":"am",
|
| 33 |
+
"Arabic":"ar",
|
| 34 |
+
"Asturian ":"st",
|
| 35 |
+
"Azerbaijani":"az",
|
| 36 |
+
"Bashkir":"ba",
|
| 37 |
+
"Belarusian":"be",
|
| 38 |
+
"Bulgarian":"bg",
|
| 39 |
+
"Bengali":"bn",
|
| 40 |
+
"Breton":"br",
|
| 41 |
+
"Bosnian":"bs",
|
| 42 |
+
"Catalan; Valencian":"ca",
|
| 43 |
+
"Cebuano":"eb",
|
| 44 |
+
"Czech":"cs",
|
| 45 |
+
"Welsh":"cy",
|
| 46 |
+
"Danish":"da",
|
| 47 |
+
"German":"de",
|
| 48 |
+
"Greeek":"el",
|
| 49 |
+
"English":"en",
|
| 50 |
+
"Spanish":"es",
|
| 51 |
+
"Estonian":"et",
|
| 52 |
+
"Persian":"fa",
|
| 53 |
+
"Fulah":"ff",
|
| 54 |
+
"Finnish":"fi",
|
| 55 |
+
"French":"fr",
|
| 56 |
+
"Western Frisian":"fy",
|
| 57 |
+
"Irish":"ga",
|
| 58 |
+
"Gaelic; Scottish Gaelic":"gd",
|
| 59 |
+
"Galician":"gl",
|
| 60 |
+
"Gujarati":"gu",
|
| 61 |
+
"Hausa":"ha",
|
| 62 |
+
"Hebrew":"he",
|
| 63 |
+
"Hindi":"hi",
|
| 64 |
+
"Croatian":"hr",
|
| 65 |
+
"Haitian; Haitian Creole":"ht",
|
| 66 |
+
"Hungarian":"hu",
|
| 67 |
+
"Armenian":"hy",
|
| 68 |
+
"Indonesian":"id",
|
| 69 |
+
"Igbo":"ig",
|
| 70 |
+
"Iloko":"lo",
|
| 71 |
+
"Icelandic":"is",
|
| 72 |
+
"Italian":"it",
|
| 73 |
+
"Japanese":"ja",
|
| 74 |
+
"Javanese":"jv",
|
| 75 |
+
"Georgian":"ka",
|
| 76 |
+
"Kazakh":"kk",
|
| 77 |
+
"Central Khmer":"km",
|
| 78 |
+
"Kannada":"kn",
|
| 79 |
+
"Korean":"ko",
|
| 80 |
+
"Luxembourgish; Letzeburgesch":"lb",
|
| 81 |
+
"Ganda":"lg",
|
| 82 |
+
"Lingala":"ln",
|
| 83 |
+
"Lao":"lo",
|
| 84 |
+
"Lithuanian":"lt",
|
| 85 |
+
"Latvian":"lv",
|
| 86 |
+
"Malagasy":"mg",
|
| 87 |
+
"Macedonian":"mk",
|
| 88 |
+
"Malayalam":"ml",
|
| 89 |
+
"Mongolian":"mn",
|
| 90 |
+
"Marathi":"mr",
|
| 91 |
+
"Malay":"ms",
|
| 92 |
+
"Burmese":"my",
|
| 93 |
+
"Nepali":"ne",
|
| 94 |
+
"Dutch; Flemish":"nl",
|
| 95 |
+
"Norwegian":"no",
|
| 96 |
+
"Northern Sotho":"ns",
|
| 97 |
+
"Occitan (post 1500)":"oc",
|
| 98 |
+
"Oriya":"or",
|
| 99 |
+
"Panjabi; Punjabi":"pa",
|
| 100 |
+
"Polish":"pl",
|
| 101 |
+
"Pushto; Pashto":"ps",
|
| 102 |
+
"Portuguese":"pt",
|
| 103 |
+
"Romanian; Moldavian; Moldovan":"ro",
|
| 104 |
+
"Russian":"ru",
|
| 105 |
+
"Sindhi":"sd",
|
| 106 |
+
"Sinhala; Sinhalese":"si",
|
| 107 |
+
"Slovak":"sk",
|
| 108 |
+
"Slovenian":"sl",
|
| 109 |
+
"Somali":"so",
|
| 110 |
+
"Albanian":"sq",
|
| 111 |
+
"Serbian":"sr",
|
| 112 |
+
"Swati":"ss",
|
| 113 |
+
"Sundanese":"su",
|
| 114 |
+
"Swedish":"sv",
|
| 115 |
+
"Swahili":"sw",
|
| 116 |
+
"Tamil":"ta",
|
| 117 |
+
"Thai":"th",
|
| 118 |
+
"Tagalog":"tl",
|
| 119 |
+
"Tswana":"tn",
|
| 120 |
+
"Turkish":"tr",
|
| 121 |
+
"Ukrainian":"uk",
|
| 122 |
+
"Urdu":"ur",
|
| 123 |
+
"Uzbek":"uz",
|
| 124 |
+
"Vietnamese":"vi",
|
| 125 |
+
"Wolof":"wo",
|
| 126 |
+
"Xhosa":"xh",
|
| 127 |
+
"Yiddish":"yi",
|
| 128 |
+
"Yoruba":"yo",
|
| 129 |
+
"Chinese":"zh",
|
| 130 |
+
"Zulu":"zu"
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
translation_models_list = [key[0] for key in translation_models.items()]
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
device = "cpu"#torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 137 |
+
print("DEVICE IS: ")
|
| 138 |
+
print(device)
|
| 139 |
+
|
| 140 |
+
videos_out_path = Path("./videos_out")
|
| 141 |
+
videos_out_path.mkdir(parents=True, exist_ok=True)
|
| 142 |
+
|
| 143 |
+
def get_youtube(video_url):
|
| 144 |
+
yt = YouTube(video_url)
|
| 145 |
+
abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
|
| 146 |
+
print("LADATATTU POLKUUN")
|
| 147 |
+
print(abs_video_path)
|
| 148 |
+
|
| 149 |
+
return abs_video_path
|
| 150 |
+
|
| 151 |
+
async def speech_to_text(video_file_path, selected_translation_lang):
|
| 152 |
+
"""
|
| 153 |
+
# Youtube with translated subtitles using OpenAI Whisper and Opus-MT models.
|
| 154 |
+
# Currently supports only English audio
|
| 155 |
+
This space allows you to:
|
| 156 |
+
1. Download youtube video with a given url
|
| 157 |
+
2. Watch it in the first video component
|
| 158 |
+
3. Run automatic speech recognition on the video using Whisper
|
| 159 |
+
4. Translate the recognized transcriptions to Finnish, Swedish, Danish
|
| 160 |
+
5. Burn the translations to the original video and watch the video in the 2nd video component
|
| 161 |
+
|
| 162 |
+
Speech Recognition is based on OpenAI Whisper https://github.com/openai/whisper
|
| 163 |
+
"""
|
| 164 |
+
|
| 165 |
+
if(video_file_path == None):
|
| 166 |
+
raise ValueError("Error no video input")
|
| 167 |
+
print(video_file_path)
|
| 168 |
+
try:
|
| 169 |
+
audio = whisper.load_audio(video_file_path)
|
| 170 |
+
except Exception as e:
|
| 171 |
+
raise RuntimeError("Error converting video to audio")
|
| 172 |
+
|
| 173 |
+
last_time = time.time()
|
| 174 |
+
|
| 175 |
+
try:
|
| 176 |
+
print(f'Transcribing via local model')
|
| 177 |
+
transcribe_options = dict(beam_size=5, best_of=5, without_timestamps=False)
|
| 178 |
+
|
| 179 |
+
transcription = asr_model.transcribe(audio, **transcribe_options)
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
#translation_options = dict(language=selected_translation_lang, beam_size=5, best_of=5, without_timestamps=False)
|
| 183 |
+
#translations = asr_model.transcribe(audio, **translation_options)
|
| 184 |
+
|
| 185 |
+
df = pd.DataFrame(columns=['start','end','text'])
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
for i,segment in enumerate(transcription['segments']):
|
| 190 |
+
new_row = {'start': segment['start'],
|
| 191 |
+
'end': segment['end'],
|
| 192 |
+
'text': segment['text']
|
| 193 |
+
}
|
| 194 |
+
df = df.append(new_row, ignore_index=True)
|
| 195 |
+
|
| 196 |
+
if selected_translation_lang is None:
|
| 197 |
+
selected_translation_lang = 'Finnish'
|
| 198 |
+
|
| 199 |
+
sentences = df['text']
|
| 200 |
+
df['translation'] = translation_model.translate(sentences, target_lang=translation_models.get(selected_translation_lang), max_new_tokens = 50)
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
print('After translation to target language \n')
|
| 204 |
+
|
| 205 |
+
return (df)
|
| 206 |
+
except Exception as e:
|
| 207 |
+
raise RuntimeError("Error Running inference with local model", e)
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
def create_srt_and_burn(df, video_in):
|
| 211 |
+
|
| 212 |
+
print("Starting creation of video wit srt")
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
with open('testi.srt','w', encoding="utf-8") as file:
|
| 216 |
+
for i in range(len(df)):
|
| 217 |
+
file.write(str(i+1))
|
| 218 |
+
file.write('\n')
|
| 219 |
+
start = df.iloc[i]['start']
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
milliseconds = round(start * 1000.0)
|
| 223 |
+
|
| 224 |
+
hours = milliseconds // 3_600_000
|
| 225 |
+
milliseconds -= hours * 3_600_000
|
| 226 |
+
|
| 227 |
+
minutes = milliseconds // 60_000
|
| 228 |
+
milliseconds -= minutes * 60_000
|
| 229 |
+
|
| 230 |
+
seconds = milliseconds // 1_000
|
| 231 |
+
milliseconds -= seconds * 1_000
|
| 232 |
+
|
| 233 |
+
file.write(f"{hours}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}")
|
| 234 |
+
|
| 235 |
+
stop = df.iloc[i]['end']
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
milliseconds = round(stop * 1000.0)
|
| 239 |
+
|
| 240 |
+
hours = milliseconds // 3_600_000
|
| 241 |
+
milliseconds -= hours * 3_600_000
|
| 242 |
+
|
| 243 |
+
minutes = milliseconds // 60_000
|
| 244 |
+
milliseconds -= minutes * 60_000
|
| 245 |
+
|
| 246 |
+
seconds = milliseconds // 1_000
|
| 247 |
+
milliseconds -= seconds * 1_000
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
file.write(' --> ')
|
| 251 |
+
file.write(f"{hours}:{minutes:02d}:{seconds:02d}.{milliseconds:03d}")
|
| 252 |
+
file.write('\n')
|
| 253 |
+
file.writelines(df.iloc[i]['translation'])
|
| 254 |
+
if int(i) != len(df)-1:
|
| 255 |
+
file.write('\n\n')
|
| 256 |
+
|
| 257 |
+
print("SRT DONE")
|
| 258 |
+
try:
|
| 259 |
+
file1 = open('./testi.srt', 'r', encoding="utf-8")
|
| 260 |
+
Lines = file1.readlines()
|
| 261 |
+
|
| 262 |
+
count = 0
|
| 263 |
+
# Strips the newline character
|
| 264 |
+
for line in Lines:
|
| 265 |
+
count += 1
|
| 266 |
+
print("{}".format(line))
|
| 267 |
+
|
| 268 |
+
print(type(video_in))
|
| 269 |
+
print(video_in)
|
| 270 |
+
|
| 271 |
+
video_out = video_in.replace('.mp4', '_out.mp4')
|
| 272 |
+
print(video_out)
|
| 273 |
+
command = 'ffmpeg -i "{}" -y -vf subtitles=./testi.srt "{}"'.format(video_in, video_out)
|
| 274 |
+
print(command)
|
| 275 |
+
os.system(command)
|
| 276 |
+
return video_out
|
| 277 |
+
except Exception as e:
|
| 278 |
+
print(e)
|
| 279 |
+
return video_out
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
# ---- Gradio Layout -----
|
| 283 |
+
video_in = gr.Video(label="Video file", mirror_webcam=False)
|
| 284 |
+
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
|
| 285 |
+
video_out = gr.Video(label="Video Out", mirror_webcam=False)
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
df_init = pd.DataFrame(columns=['start','end','text','translation'])
|
| 289 |
+
selected_translation_lang = gr.Dropdown(choices=translation_models_list, type="value", value="English", label="Language to translate transcriptions to", interactive=True)
|
| 290 |
+
|
| 291 |
+
transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10)
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
demo = gr.Blocks(css='''
|
| 295 |
+
#cut_btn, #reset_btn { align-self:stretch; }
|
| 296 |
+
#\\31 3 { max-width: 540px; }
|
| 297 |
+
.output-markdown {max-width: 65ch !important;}
|
| 298 |
+
''')
|
| 299 |
+
demo.encrypt = False
|
| 300 |
+
with demo:
|
| 301 |
+
transcription_var = gr.Variable()
|
| 302 |
+
|
| 303 |
+
with gr.Row():
|
| 304 |
+
with gr.Column():
|
| 305 |
+
gr.Markdown('''
|
| 306 |
+
### This space allows you to:
|
| 307 |
+
##### 1. Download youtube video with a given URL
|
| 308 |
+
##### 2. Watch it in the first video component
|
| 309 |
+
##### 3. Run automatic speech recognition on the video using Whisper (Please remember to select translation language)
|
| 310 |
+
##### 4. Translate the recognized transcriptions to Finnish, Swedish, Danish
|
| 311 |
+
##### 5. Burn the translations to the original video and watch the video in the 2nd video component
|
| 312 |
+
''')
|
| 313 |
+
|
| 314 |
+
with gr.Column():
|
| 315 |
+
gr.Markdown('''
|
| 316 |
+
### 1. Insert Youtube URL below (Some examples below which I suggest to use for first tests)
|
| 317 |
+
##### 1. https://www.youtube.com/watch?v=nlMuHtV82q8&ab_channel=NothingforSale24
|
| 318 |
+
##### 2. https://www.youtube.com/watch?v=JzPfMbG1vrE&ab_channel=ExplainerVideosByLauren
|
| 319 |
+
##### 3. https://www.youtube.com/watch?v=S68vvV0kod8&ab_channel=Pearl-CohnTelevision
|
| 320 |
+
''')
|
| 321 |
+
|
| 322 |
+
with gr.Row():
|
| 323 |
+
with gr.Column():
|
| 324 |
+
youtube_url_in.render()
|
| 325 |
+
download_youtube_btn = gr.Button("Step 1. Download Youtube video")
|
| 326 |
+
download_youtube_btn.click(get_youtube, [youtube_url_in], [
|
| 327 |
+
video_in])
|
| 328 |
+
print(video_in)
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
with gr.Row():
|
| 332 |
+
with gr.Column():
|
| 333 |
+
video_in.render()
|
| 334 |
+
with gr.Column():
|
| 335 |
+
gr.Markdown('''
|
| 336 |
+
##### Here you can start the transcription and translation process.
|
| 337 |
+
##### Be aware that processing will last for a while (35 second video took around 20 seconds in my testing)
|
| 338 |
+
''')
|
| 339 |
+
transcribe_btn = gr.Button("Step 2. Transcribe and translate audio")
|
| 340 |
+
|
| 341 |
+
transcribe_btn.click(speech_to_text, [video_in, selected_translation_lang], transcription_df)
|
| 342 |
+
|
| 343 |
+
with gr.Row():
|
| 344 |
+
with gr.Column():
|
| 345 |
+
selected_translation_lang.render()
|
| 346 |
+
|
| 347 |
+
with gr.Row():
|
| 348 |
+
gr.Markdown('''
|
| 349 |
+
##### Here you will get transcription and translation output
|
| 350 |
+
##### If you see error please remember to select translation language
|
| 351 |
+
##### ''')
|
| 352 |
+
|
| 353 |
+
with gr.Row():
|
| 354 |
+
with gr.Column():
|
| 355 |
+
transcription_df.render()
|
| 356 |
+
|
| 357 |
+
with gr.Row():
|
| 358 |
+
with gr.Column():
|
| 359 |
+
translate_and_make_srt_btn = gr.Button("Step 3. Create and burn srt to video")
|
| 360 |
+
print(video_in)
|
| 361 |
+
translate_and_make_srt_btn.click(create_srt_and_burn, [transcription_df,video_in], [
|
| 362 |
+
video_out])
|
| 363 |
+
video_out.render()
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
if __name__ == "__main__":
|
| 367 |
+
demo.queue().launch(debug=True, share=False, enable_queue=True)
|