File size: 21,916 Bytes
b190b45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
#!/usr/bin/env python3
"""
AI Models Monitor & Database Manager
سیستم نظارت و مدیریت دیتابیس مدلهای AI
Features:
- شناسایی تمام مدلهای AI از Hugging Face
- تست عملکرد هر مدل
- جمعآوری metrics (latency, success rate, etc.)
- ذخیره در دیتابیس
- Agent خودکار برای بررسی هر 5 دقیقه
"""
import asyncio
import logging
import json
from datetime import datetime, timedelta
from typing import Dict, List, Any, Optional
import httpx
from pathlib import Path
import sqlite3
logger = logging.getLogger(__name__)
class AIModelsDatabase:
"""
مدیریت دیتابیس مدلهای AI
"""
def __init__(self, db_path: str = "data/ai_models.db"):
self.db_path = db_path
Path(db_path).parent.mkdir(parents=True, exist_ok=True)
self.init_database()
def init_database(self):
"""ایجاد جداول دیتابیس"""
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# جدول مدلها
cursor.execute('''
CREATE TABLE IF NOT EXISTS ai_models (
id INTEGER PRIMARY KEY AUTOINCREMENT,
model_id TEXT UNIQUE NOT NULL,
model_key TEXT,
task TEXT,
category TEXT,
provider TEXT DEFAULT 'huggingface',
requires_auth BOOLEAN DEFAULT 0,
is_active BOOLEAN DEFAULT 1,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
''')
# جدول metrics (عملکرد مدلها)
cursor.execute('''
CREATE TABLE IF NOT EXISTS model_metrics (
id INTEGER PRIMARY KEY AUTOINCREMENT,
model_id TEXT NOT NULL,
status TEXT, -- 'available', 'loading', 'failed', 'auth_required'
response_time_ms REAL,
success BOOLEAN,
error_message TEXT,
test_input TEXT,
test_output TEXT,
confidence REAL,
checked_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (model_id) REFERENCES ai_models(model_id)
)
''')
# جدول آمار کلی
cursor.execute('''
CREATE TABLE IF NOT EXISTS model_stats (
model_id TEXT PRIMARY KEY,
total_checks INTEGER DEFAULT 0,
successful_checks INTEGER DEFAULT 0,
failed_checks INTEGER DEFAULT 0,
avg_response_time_ms REAL,
last_success_at TIMESTAMP,
last_failure_at TIMESTAMP,
success_rate REAL,
FOREIGN KEY (model_id) REFERENCES ai_models(model_id)
)
''')
conn.commit()
conn.close()
logger.info(f"✅ Database initialized: {self.db_path}")
def add_model(self, model_info: Dict[str, Any]):
"""اضافه کردن یا بروزرسانی مدل"""
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
cursor.execute('''
INSERT OR REPLACE INTO ai_models
(model_id, model_key, task, category, provider, requires_auth, updated_at)
VALUES (?, ?, ?, ?, ?, ?, CURRENT_TIMESTAMP)
''', (
model_info['model_id'],
model_info.get('model_key'),
model_info.get('task'),
model_info.get('category'),
model_info.get('provider', 'huggingface'),
model_info.get('requires_auth', False)
))
conn.commit()
conn.close()
def save_metric(self, metric: Dict[str, Any]):
"""ذخیره metric"""
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
cursor.execute('''
INSERT INTO model_metrics
(model_id, status, response_time_ms, success, error_message,
test_input, test_output, confidence)
VALUES (?, ?, ?, ?, ?, ?, ?, ?)
''', (
metric['model_id'],
metric.get('status'),
metric.get('response_time_ms'),
metric.get('success', False),
metric.get('error_message'),
metric.get('test_input'),
json.dumps(metric.get('test_output')),
metric.get('confidence')
))
# بروزرسانی آمار کلی
self._update_model_stats(cursor, metric['model_id'], metric.get('success', False))
conn.commit()
conn.close()
def _update_model_stats(self, cursor, model_id: str, success: bool):
"""بروزرسانی آمار مدل"""
# دریافت آمار فعلی
cursor.execute('''
SELECT total_checks, successful_checks, failed_checks, avg_response_time_ms
FROM model_stats WHERE model_id = ?
''', (model_id,))
row = cursor.fetchone()
if row:
total, successful, failed, avg_time = row
total += 1
successful += 1 if success else 0
failed += 0 if success else 1
# محاسبه میانگین زمان پاسخ جدید
cursor.execute('''
SELECT AVG(response_time_ms) FROM model_metrics
WHERE model_id = ? AND success = 1
''', (model_id,))
avg_time = cursor.fetchone()[0] or 0
success_rate = (successful / total * 100) if total > 0 else 0
cursor.execute('''
UPDATE model_stats SET
total_checks = ?,
successful_checks = ?,
failed_checks = ?,
avg_response_time_ms = ?,
success_rate = ?,
last_success_at = CASE WHEN ? THEN CURRENT_TIMESTAMP ELSE last_success_at END,
last_failure_at = CASE WHEN ? THEN CURRENT_TIMESTAMP ELSE last_failure_at END
WHERE model_id = ?
''', (total, successful, failed, avg_time, success_rate,
success, not success, model_id))
else:
# ایجاد رکورد جدید
cursor.execute('''
INSERT INTO model_stats
(model_id, total_checks, successful_checks, failed_checks,
success_rate, last_success_at, last_failure_at)
VALUES (?, 1, ?, ?, ?,
CASE WHEN ? THEN CURRENT_TIMESTAMP END,
CASE WHEN ? THEN CURRENT_TIMESTAMP END)
''', (model_id,
1 if success else 0,
0 if success else 1,
100.0 if success else 0.0,
success, not success))
def get_all_models(self) -> List[Dict[str, Any]]:
"""دریافت همه مدلها"""
conn = sqlite3.connect(self.db_path)
conn.row_factory = sqlite3.Row
cursor = conn.cursor()
cursor.execute('''
SELECT m.*, s.total_checks, s.successful_checks, s.success_rate, s.avg_response_time_ms
FROM ai_models m
LEFT JOIN model_stats s ON m.model_id = s.model_id
WHERE m.is_active = 1
''')
models = [dict(row) for row in cursor.fetchall()]
conn.close()
return models
def get_model_history(self, model_id: str, limit: int = 100) -> List[Dict[str, Any]]:
"""دریافت تاریخچه مدل"""
conn = sqlite3.connect(self.db_path)
conn.row_factory = sqlite3.Row
cursor = conn.cursor()
cursor.execute('''
SELECT * FROM model_metrics
WHERE model_id = ?
ORDER BY checked_at DESC
LIMIT ?
''', (model_id, limit))
history = [dict(row) for row in cursor.fetchall()]
conn.close()
return history
class AIModelsMonitor:
"""
مانیتور مدلهای AI
شناسایی، تست، و نظارت بر همه مدلها
"""
def __init__(self, db: AIModelsDatabase):
self.db = db
import os
self.hf_api_token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_TOKEN")
# استفاده از router endpoint جدید
self.base_url = "https://api-inference.huggingface.co/models"
# مدلهای شناخته شده (از کدهای موجود)
self.known_models = self._load_known_models()
def _load_known_models(self) -> List[Dict[str, Any]]:
"""بارگذاری مدلهای شناخته شده"""
models = []
# از real_ai_models.py
sentiment_models = [
{"model_id": "ElKulako/cryptobert", "task": "sentiment-analysis", "category": "crypto", "requires_auth": True},
{"model_id": "kk08/CryptoBERT", "task": "sentiment-analysis", "category": "crypto"},
{"model_id": "ProsusAI/finbert", "task": "sentiment-analysis", "category": "financial"},
{"model_id": "cardiffnlp/twitter-roberta-base-sentiment-latest", "task": "sentiment-analysis", "category": "twitter"},
{"model_id": "StephanAkkerman/FinTwitBERT-sentiment", "task": "sentiment-analysis", "category": "financial"},
{"model_id": "finiteautomata/bertweet-base-sentiment-analysis", "task": "sentiment-analysis", "category": "twitter"},
{"model_id": "yiyanghkust/finbert-tone", "task": "sentiment-analysis", "category": "financial"},
{"model_id": "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis", "task": "sentiment-analysis", "category": "news"},
{"model_id": "distilbert-base-uncased-finetuned-sst-2-english", "task": "sentiment-analysis", "category": "general"},
{"model_id": "nlptown/bert-base-multilingual-uncased-sentiment", "task": "sentiment-analysis", "category": "general"},
{"model_id": "mayurjadhav/crypto-sentiment-model", "task": "sentiment-analysis", "category": "crypto"},
{"model_id": "mathugo/crypto_news_bert", "task": "sentiment-analysis", "category": "crypto_news"},
{"model_id": "burakutf/finetuned-finbert-crypto", "task": "sentiment-analysis", "category": "crypto"},
]
generation_models = [
{"model_id": "OpenC/crypto-gpt-o3-mini", "task": "text-generation", "category": "crypto"},
{"model_id": "agarkovv/CryptoTrader-LM", "task": "text-generation", "category": "trading"},
{"model_id": "gpt2", "task": "text-generation", "category": "general"},
{"model_id": "distilgpt2", "task": "text-generation", "category": "general"},
]
summarization_models = [
{"model_id": "facebook/bart-large-cnn", "task": "summarization", "category": "news"},
{"model_id": "sshleifer/distilbart-cnn-12-6", "task": "summarization", "category": "news"},
{"model_id": "FurkanGozukara/Crypto-Financial-News-Summarizer", "task": "summarization", "category": "crypto_news"},
]
zero_shot_models = [
{"model_id": "facebook/bart-large-mnli", "task": "zero-shot-classification", "category": "general"},
]
models.extend(sentiment_models)
models.extend(generation_models)
models.extend(summarization_models)
models.extend(zero_shot_models)
return models
async def test_model(self, model_info: Dict[str, Any]) -> Dict[str, Any]:
"""
تست یک مدل
Returns:
Dict با اطلاعات کامل نتیجه تست
"""
model_id = model_info['model_id']
task = model_info.get('task', 'sentiment-analysis')
# متن تست بر اساس task
test_inputs = {
'sentiment-analysis': "Bitcoin is showing strong bullish momentum!",
'text-generation': "The future of cryptocurrency is",
'summarization': "Bitcoin reached new all-time highs today as institutional investors continue to show strong interest in cryptocurrency markets. Analysts predict further growth in the coming months.",
'zero-shot-classification': "Bitcoin price surging",
}
test_input = test_inputs.get(task, "Test input")
url = f"{self.base_url}/{model_id}"
headers = {"Content-Type": "application/json"}
if self.hf_api_token:
headers["Authorization"] = f"Bearer {self.hf_api_token}"
# Payload بر اساس task
if task == 'zero-shot-classification':
payload = {
"inputs": test_input,
"parameters": {"candidate_labels": ["bullish", "bearish", "neutral"]}
}
else:
payload = {"inputs": test_input}
start_time = datetime.now()
try:
async with httpx.AsyncClient(timeout=30.0) as client:
response = await client.post(url, headers=headers, json=payload)
end_time = datetime.now()
response_time = (end_time - start_time).total_seconds() * 1000 # ms
result = {
'model_id': model_id,
'task': task,
'category': model_info.get('category'),
'test_input': test_input,
'response_time_ms': response_time,
'http_status': response.status_code
}
if response.status_code == 200:
data = response.json()
result['status'] = 'available'
result['success'] = True
result['test_output'] = data
# استخراج confidence
if isinstance(data, list) and len(data) > 0:
if isinstance(data[0], dict):
result['confidence'] = data[0].get('score', 0.0)
elif isinstance(data[0], list) and len(data[0]) > 0:
result['confidence'] = data[0][0].get('score', 0.0)
logger.info(f"✅ {model_id}: {response_time:.0f}ms")
elif response.status_code == 503:
result['status'] = 'loading'
result['success'] = False
result['error_message'] = "Model is loading"
logger.warning(f"⏳ {model_id}: Loading...")
elif response.status_code == 401:
result['status'] = 'auth_required'
result['success'] = False
result['error_message'] = "Authentication required"
logger.warning(f"🔐 {model_id}: Auth required")
elif response.status_code == 404:
result['status'] = 'not_found'
result['success'] = False
result['error_message'] = "Model not found"
logger.error(f"❌ {model_id}: Not found")
else:
result['status'] = 'failed'
result['success'] = False
result['error_message'] = f"HTTP {response.status_code}"
logger.error(f"❌ {model_id}: HTTP {response.status_code}")
return result
except asyncio.TimeoutError:
return {
'model_id': model_id,
'task': task,
'category': model_info.get('category'),
'status': 'timeout',
'success': False,
'error_message': "Request timeout (30s)",
'test_input': test_input
}
except Exception as e:
return {
'model_id': model_id,
'task': task,
'category': model_info.get('category'),
'status': 'error',
'success': False,
'error_message': str(e)[:200],
'test_input': test_input
}
async def scan_all_models(self) -> Dict[str, Any]:
"""
اسکن همه مدلها
"""
logger.info(f"🔍 Starting scan of {len(self.known_models)} models...")
# اضافه کردن مدلها به دیتابیس
for model_info in self.known_models:
self.db.add_model(model_info)
# تست همه مدلها
tasks = [self.test_model(model_info) for model_info in self.known_models]
results = await asyncio.gather(*tasks, return_exceptions=True)
# پردازش نتایج
summary = {
'total': len(results),
'available': 0,
'loading': 0,
'failed': 0,
'auth_required': 0,
'not_found': 0,
'models': []
}
for result in results:
if isinstance(result, Exception):
logger.error(f"Exception: {result}")
continue
# ذخیره در دیتابیس
self.db.save_metric(result)
# آمار
status = result.get('status', 'unknown')
if status == 'available':
summary['available'] += 1
elif status == 'loading':
summary['loading'] += 1
elif status == 'auth_required':
summary['auth_required'] += 1
elif status == 'not_found':
summary['not_found'] += 1
else:
summary['failed'] += 1
summary['models'].append({
'model_id': result['model_id'],
'status': status,
'response_time_ms': result.get('response_time_ms'),
'success': result.get('success', False)
})
logger.info(f"✅ Scan complete: {summary['available']}/{summary['total']} available")
return summary
def get_models_by_status(self, status: str = None) -> List[Dict[str, Any]]:
"""دریافت مدلها بر اساس وضعیت"""
models = self.db.get_all_models()
if status:
# فیلتر بر اساس آخرین وضعیت
filtered = []
for model in models:
history = self.db.get_model_history(model['model_id'], limit=1)
if history and history[0]['status'] == status:
filtered.append(model)
return filtered
return models
class AIModelsAgent:
"""
Agent خودکار برای نظارت مدلها
هر 5 دقیقه یکبار بررسی میکند
"""
def __init__(self, monitor: AIModelsMonitor, interval_minutes: int = 5):
self.monitor = monitor
self.interval = interval_minutes * 60 # به ثانیه
self.running = False
self.task = None
async def run(self):
"""اجرای Agent"""
self.running = True
logger.info(f"🤖 AI Models Agent started (interval: {self.interval/60:.0f} minutes)")
while self.running:
try:
logger.info(f"🔄 Starting periodic scan...")
result = await self.monitor.scan_all_models()
logger.info(f"📊 Scan Results:")
logger.info(f" Available: {result['available']}")
logger.info(f" Loading: {result['loading']}")
logger.info(f" Failed: {result['failed']}")
logger.info(f" Auth Required: {result['auth_required']}")
# صبر برای interval بعدی
logger.info(f"⏰ Next scan in {self.interval/60:.0f} minutes...")
await asyncio.sleep(self.interval)
except Exception as e:
logger.error(f"❌ Agent error: {e}")
await asyncio.sleep(60) # صبر 1 دقیقه در صورت خطا
def start(self):
"""شروع Agent"""
if not self.task:
self.task = asyncio.create_task(self.run())
return self.task
async def stop(self):
"""توقف Agent"""
self.running = False
if self.task:
self.task.cancel()
try:
await self.task
except asyncio.CancelledError:
pass
logger.info("🛑 AI Models Agent stopped")
# Global instances
db = AIModelsDatabase()
monitor = AIModelsMonitor(db)
agent = AIModelsAgent(monitor, interval_minutes=5)
__all__ = ["AIModelsDatabase", "AIModelsMonitor", "AIModelsAgent", "db", "monitor", "agent"]
|