mport os
import requests
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import TimeSeriesSplit, train_test_split
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, SVC
from sklearn.metrics import accuracy_score
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten
from tkinter import *
import logging
import time
import schedule

Initialize logging
logging.basicConfig(level=logging.INFO)

Function to fetch data from CoinMarketCap API
def fetch_data():
 api_url = "https://pro-api.coinmarketcap.com/v1/cryptocurrency/listings/latest"
 headers = {
 'Accepts': 'application/json',
 'X-CMC_PRO_API_KEY': '04cf4b5b-9868-465c-8ba0-9f2e78c92eb1',
 }
 response = requests.get(api_url, headers=headers)
 data = response.json()
 df = pd.DataFrame(data['data'])
 return df

Function to train the model
def train_model():
 data = fetch_data()

 # Use TimeSeriesSplit to split the data into training and testing sets.
 tscv = TimeSeriesSplit(n_splits=5)

 # Preprocess the data.
 imputer = SimpleImputer(strategy='mean')
 scaler = StandardScaler()

 # Train the models.
 rf = RandomForestClassifier(n_estimators=100, max_depth=10)
 gb = GradientBoostingClassifier(n_estimators=100, max_depth=10)
 svm = SVC()

 for train_index, test_index in tscv.split(data):
 X_train, X_test = data.iloc[train_index][['Open', 'High', 'Low', 'Close']], data.iloc[test_index][['Open', 'High', 'Low', 'Close']]
 y_train, y_test = data.iloc[train_index]['Prediction'], data.iloc[test_index]['Prediction']

 # Impute missing values.
 X_train = imputer.fit_transform(X_train)
 X_test = imputer.transform(X_test)

 # Standardize the data.
 scaler.fit(X_train)
 X_train = scaler.transform(X_train)
 X_test = scaler.transform(X_test)

 # Train the models.
 rf.fit(X_train, y_train)
 gb.fit(X_train, y_train)
 svm.fit(X_train, y_train)

 # Make predictions and calculate accuracy.
 predictions_rf = rf.predict(X_test)
 predictions_gb = gb.predict(X_test)
 predictions_svm = svm.predict(X_test)

 accuracy_rf = accuracy_score(y_test, predictions_rf)
 accuracy_gb = accuracy_score(y_test, predictions_gb)
 accuracy_svm = accuracy_score(y_test, predictions_svm)

 hours.do(train_model)

while True:
 schedule.run_pending()
 print("Accuracy of Random Forest:", accuracy_rf)
 print("Accuracy of Gradient Boosting:", accuracy_gb)
 print("Accuracy of SVM:", accuracy_svm)

Schedule the function to run every hour.
schedule.every(1). time.sleep(1)

