Spaces:
Sleeping
Sleeping
File size: 21,644 Bytes
86a2d4b 36162a4 86a2d4b 018deef 86a2d4b 018deef 36162a4 86a2d4b 36162a4 018deef 36162a4 86a2d4b 36162a4 018deef 36162a4 018deef 36162a4 bf281e4 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 018deef 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 570d100 36162a4 86a2d4b 36162a4 570d100 36162a4 86a2d4b 018deef 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 86a2d4b 36162a4 7d41f1f 86a2d4b 7d41f1f 36162a4 7d41f1f 7614637 7abafe2 7614637 7abafe2 8ba6650 7d41f1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 |
# app.py
"""
Jajabor – SEBA Assamese Class 10 Tutor
Hugging Face Spaces ready Gradio app (single-file)
This file contains a working, lightweight adaptation of your Colab notebook
so it can run on Hugging Face Spaces (CPU-friendly demo).
IMPORTANT notes for deployment:
- Spaces has limited CPU/GPU. Large models (Qwen2.5, BAAI/bge-m3) won't run
locally in most Spaces. This app uses smaller models for a working demo.
- For production-quality behavior, switch embeddings/LLM calls to the
Hugging Face Inference API (use your HF token) or host on Colab/VM with GPU.
Create a `requirements.txt` with these entries (add to your repo):
gradio==4.44.0
pymupdf
sentence-transformers
faiss-cpu
transformers
accelerate
torch
pytesseract
pillow
sympy
huggingface_hub
Place your SEBA Class10 PDFs in the repository under `pdfs/class10/`.
Usage on Spaces:
- Upload the repo (app.py + requirements.txt + pdfs/class10/*).
- If you want higher-quality LLMs/embeddings, set a repo secret HF_TOKEN
and configure INFERENCE_MODELS below.
"""
import os
import io
import sqlite3
from datetime import datetime
import threading
import fitz # PyMuPDF
import numpy as np
from PIL import Image
import gradio as gr
import faiss
import pytesseract
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import sympy as sp
from huggingface_hub import InferenceApi
# ---------------------- Configuration ----------------------
APP_NAME = "Jajabor – SEBA Assamese Class 10 Tutor (Spaces demo)"
BASE_DIR = os.path.abspath(".")
PDF_DIR = os.path.join(BASE_DIR, "pdfs", "class10")
DB_PATH = os.path.join(BASE_DIR, "jajabor_users.db")
# Lightweight defaults for Spaces demo. Replace with heavier models via Inference API.
EMBEDDING_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
LLM_MODEL_LOCAL = "sshleifer/tiny-gpt2" # very small demo model (optional local)
# If you set HF_TOKEN as a repo secret / environment variable, the app will
# use the Inference API models below for better results.
HF_TOKEN = os.environ.get("HF_TOKEN", None)
INFERENCE_EMBED_MODEL = "sentence-transformers/all-mpnet-base-v2" # example
INFERENCE_LLM_MODEL = "bigscience/bloomz-1b1" # example remote model
CHUNK_SIZE = 600
CHUNK_OVERLAP = 120
TOP_K = 5
# Global variables initialized later
embedding_model = None
index = None
corpus_chunks = []
corpus_metas = []
# If HF_TOKEN provided, create inference clients
inference_embed_client = None
inference_llm_client = None
if HF_TOKEN:
try:
inference_embed_client = InferenceApi(repo_id=INFERENCE_EMBED_MODEL, token=HF_TOKEN)
inference_llm_client = InferenceApi(repo_id=INFERENCE_LLM_MODEL, token=HF_TOKEN)
except Exception:
inference_embed_client = None
inference_llm_client = None
# ---------------------- Database ----------------------
def init_db(db_path=DB_PATH):
os.makedirs(os.path.dirname(db_path), exist_ok=True)
conn = sqlite3.connect(db_path)
cur = conn.cursor()
cur.execute(
"""
CREATE TABLE IF NOT EXISTS users (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT UNIQUE,
created_at TEXT
)
"""
)
cur.execute(
"""
CREATE TABLE IF NOT EXISTS interactions (
id INTEGER PRIMARY KEY AUTOINCREMENT,
user_id INTEGER,
timestamp TEXT,
query TEXT,
answer TEXT,
is_math INTEGER,
FOREIGN KEY(user_id) REFERENCES users(id)
)
"""
)
conn.commit()
conn.close()
def get_or_create_user(username: str):
username = username.strip()
if not username:
return None
conn = sqlite3.connect(DB_PATH)
cur = conn.cursor()
cur.execute("SELECT id FROM users WHERE username=?", (username,))
row = cur.fetchone()
if row:
user_id = row[0]
else:
cur.execute(
"INSERT INTO users (username, created_at) VALUES (?, ?)",
(username, datetime.utcnow().isoformat()),
)
conn.commit()
user_id = cur.lastrowid
conn.close()
return user_id
def log_interaction(user_id, query, answer, is_math: bool):
conn = sqlite3.connect(DB_PATH)
cur = conn.cursor()
cur.execute(
"""
INSERT INTO interactions (user_id, timestamp, query, answer, is_math)
VALUES (?, ?, ?, ?, ?)
""",
(user_id, datetime.utcnow().isoformat(), query, answer, 1 if is_math else 0),
)
conn.commit()
conn.close()
def get_user_stats(user_id):
conn = sqlite3.connect(DB_PATH)
cur = conn.cursor()
cur.execute("SELECT COUNT(*), SUM(is_math) FROM interactions WHERE user_id=?", (user_id,))
row = cur.fetchone()
conn.close()
total = row[0] or 0
math_count = row[1] or 0
return total, math_count
init_db()
# ---------------------- PDF loading + RAG ----------------------
def extract_text_from_pdf(pdf_path: str) -> str:
try:
doc = fitz.open(pdf_path)
except Exception:
return ""
pages = []
for page in doc:
txt = page.get_text("text")
if txt:
pages.append(txt)
return "\n".join(pages)
def load_all_pdfs(pdf_dir: str):
texts = []
metas = []
if not os.path.exists(pdf_dir):
print("PDF_DIR does not exist:", pdf_dir)
return texts, metas
for fname in sorted(os.listdir(pdf_dir)):
if fname.lower().endswith(".pdf"):
path = os.path.join(pdf_dir, fname)
print("Reading:", path)
text = extract_text_from_pdf(path)
if text:
texts.append(text)
metas.append({"source": fname})
return texts, metas
def split_text(text: str, chunk_size=CHUNK_SIZE, overlap=CHUNK_OVERLAP):
chunks = []
start = 0
L = len(text)
while start < L:
end = min(start + chunk_size, L)
chunk = text[start:end]
if chunk.strip():
chunks.append(chunk)
if end == L:
break
start = end - overlap
return chunks
def build_embedding_index():
global embedding_model, index, corpus_chunks, corpus_metas
print("Loading embedding model:", EMBEDDING_MODEL_NAME)
embedding_model = SentenceTransformer(EMBEDDING_MODEL_NAME)
all_texts, all_metas = load_all_pdfs(PDF_DIR)
corpus_chunks = []
corpus_metas = []
for text, meta in zip(all_texts, all_metas):
chs = split_text(text)
corpus_chunks.extend(chs)
corpus_metas.extend([meta] * len(chs))
if not corpus_chunks:
print("No document chunks found - RAG will be empty.")
index = None
return
print("Encoding", len(corpus_chunks), "chunks...")
embs = embedding_model.encode(corpus_chunks, batch_size=32, show_progress_bar=False).astype("float32")
dim = embs.shape[1]
index = faiss.IndexFlatL2(dim)
index.add(embs)
print("FAISS index ready with dim", dim)
# Build in a background thread so Spaces can start quickly
threading.Thread(target=build_embedding_index, daemon=True).start()
def rag_search(query: str, k: int = TOP_K):
if index is None or embedding_model is None:
return []
q_vec = embedding_model.encode([query]).astype("float32")
D, I = index.search(q_vec, k)
results = []
for dist, idx in zip(D[0], I[0]):
if idx == -1:
continue
results.append({
"score": float(dist),
"text": corpus_chunks[idx],
"meta": corpus_metas[idx],
})
return results
# ---------------------- LLM + RAG prompt building ----------------------
# Try to create a small local LLM pipeline for demo; if not present, fallback to Inference API
local_llm = None
try:
tokenizer = AutoTokenizer.from_pretrained(LLM_MODEL_LOCAL)
model = AutoModelForCausalLM.from_pretrained(LLM_MODEL_LOCAL)
local_llm = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_new_tokens=256,
do_sample=True,
temperature=0.3,
top_p=0.9,
)
print("Local tiny LLM loaded for demo.")
except Exception:
local_llm = None
print("Local LLM not available; will use Inference API if HF_TOKEN is set.")
SYSTEM_PROMPT = """
You are "Jajabor", an expert SEBA Assamese tutor for Class 10.
Always prefer to answer in Assamese. If the student clearly asks for English, you may reply in English.
Rules:
- Use ONLY the given textbook context when requested.
- If you are not sure, say: "এই প্ৰশ্নটো পাঠ্যপুথিৰ অংশত স্পষ্টকৈ নাই, সেয়েহে মই নিশ্চিত নহয়।"
- বোঝাপৰা সহজ ভাষাত ব্যাখ্যা কৰা, উদাহৰণ দিয়ক।
- If it is a maths question, explain step-by-step clearly.
"""
def build_rag_prompt(context_blocks, question, chat_history):
ctx = ""
for i, block in enumerate(context_blocks, start=1):
src = block["meta"].get("source", "textbook")
ctx += f"\n[Context {i} – {src}]\n{block['text']}\n"
hist = ""
for role, msg in chat_history:
hist += f"{role}: {msg}\n"
prompt = f"{SYSTEM_PROMPT}\n\nপূর্বৰ বাৰ্তাসমূহ:\n{hist}\nসদস্যৰ প্ৰশ্ন:\n{question}\n\nসম্পৰ্কিত পাঠ্যপুথিৰ অংশ:\n{ctx}\n\nএতিয়া একেদম সহায়ক আৰু বুজিবলৈ সহজ উত্তৰ দিয়া।"
return prompt
def llm_answer_with_rag(question: str, chat_history):
retrieved = rag_search(question, TOP_K)
prompt = build_rag_prompt(retrieved, question, chat_history)
# Prefer Inference API if available
if inference_llm_client is not None:
try:
resp = inference_llm_client(inputs=prompt, params={"max_new_tokens": 512})
# InferenceApi returns a dict or string depending on model
if isinstance(resp, dict) and "generated_text" in resp:
out_text = resp["generated_text"]
elif isinstance(resp, str):
out_text = resp
else:
out_text = str(resp)
# Some remote models echo the prompt; try to strip prompt
if out_text.startswith(prompt):
answer = out_text[len(prompt):].strip()
else:
answer = out_text.strip()
return answer
except Exception:
pass
# Fallback to local tiny model
if local_llm is not None:
out = local_llm(prompt, num_return_sequences=1)[0]["generated_text"]
if out.startswith(prompt):
return out[len(prompt):].strip()
return out
# If nothing available, return a safe fallback
return (
"দুখঃখিত—এই Spaces ইনষ্টলেশ্যনটোৱে প্ৰতিস্থাপন কৰিব পৰা কোনো LLM নাপালে।"
" যদি আপুনি HF_TOKEN হিচাপে এক্সেস টোকেন যোগ কৰে, মই অনলাইন Inference API ব্যৱহাৰ কৰি উত্তৰ দিম."
)
# ---------------------- OCR + math helpers ----------------------
def ocr_from_image(img: Image.Image):
if img is None:
return ""
try:
img = img.convert("RGB")
except Exception:
pass
try:
text = pytesseract.image_to_string(img, lang="asm+eng")
except Exception:
try:
text = pytesseract.image_to_string(img)
except Exception:
text = ""
return text.strip()
def is_likely_math(text: str) -> bool:
math_chars = set("0123456789+-*/=^()%")
if any(ch in text for ch in math_chars):
return True
kws = ["গণিত", "সমীকৰণ", "উদাহৰণ", "প্ৰশ্ন", "বীজগণিত"]
return any(k in text for k in kws)
def solve_math_expression(expr: str):
try:
expr = expr.replace("^", "**")
if "=" in expr:
left, right = expr.split("=", 1)
left_s = sp.sympify(left)
right_s = sp.sympify(right)
eq = sp.Eq(left_s, right_s)
sol = sp.solve(eq)
steps = []
steps.append("প্ৰথমে সমীকৰণ লওঁ:")
steps.append(f"{sp.pretty(eq)}")
steps.append("Sympy ৰ সহায়ত সমাধান পোৱা যায়:")
steps.append(str(sol))
explanation = "ধাপ-ধাপে সমাধান (সংক্ষেপে):\n" + "\n".join(f"- {s}" for s in steps)
explanation += f"\n\nসেয়েহে সমাধান: {sol}"
else:
expr_s = sp.sympify(expr)
simp = sp.simplify(expr_s)
explanation = (
"প্ৰদত্ত গণিতীয় অভিব্যক্তি:\n"
f"{expr}\n\nসরলীকৰণ কৰাৰ পিছত পোৱা যায়:\n{simp}"
)
return explanation
except Exception:
return (
"মই সঠিকভাৱে গণিতীয় অভিব্যক্তি চিনাক্ত কৰিব নোৱাৰিলোঁ। "
"দয়া কৰি সমীকৰণটো অলপ বেছি স্পষ্টকৈ লিখা: উদাহৰণ – 2x + 3 = 7"
)
# ---------------------- Chat logic ----------------------
def login_user(username, user_state):
username = (username or "").strip()
if not username:
return user_state, "⚠️ অনুগ্ৰহ কৰি প্ৰথমে লগিনৰ বাবে এটা নাম লিখক।"
user_id = get_or_create_user(username)
user_state = {"username": username, "user_id": user_id}
total, math_count = get_user_stats(user_id)
stats = (
f"👤 ব্যৱহাৰকাৰী: **{username}**\n\n"
f"📊 মোট প্ৰশ্ন: **{total}**\n"
f"🧮 গণিত প্ৰশ্ন: **{math_count}**"
)
return user_state, stats
def chat_logic(
username,
text_input,
image_input,
audio_input,
chat_history,
user_state,
):
if not user_state or not user_state.get("user_id"):
sys_msg = "⚠️ প্ৰথমে ওপৰত আপোনাৰ নাম লিখি **Login / লগিন** টিপক।"
chat_history = chat_history + [[text_input or "", sys_msg]]
return chat_history, user_state, None
user_id = user_state["user_id"]
final_query_parts = []
# audio_input not handled in this demo
ocr_text = ""
if image_input is not None:
try:
# Handle gradio image types: filepath (string), PIL Image, bytes/file-like
if isinstance(image_input, str):
img = Image.open(image_input)
elif hasattr(image_input, "name") and isinstance(image_input.name, str):
# uploaded file-like with .name
img = Image.open(image_input.name)
elif isinstance(image_input, (bytes, bytearray)):
img = Image.open(io.BytesIO(image_input))
else:
img = image_input
except Exception:
try:
if hasattr(image_input, "read"):
img = Image.open(io.BytesIO(image_input.read()))
else:
img = None
except Exception:
img = None
if img is not None:
ocr_text = ocr_from_image(img)
if ocr_text:
final_query_parts.append(ocr_text)
if text_input:
final_query_parts.append(text_input)
if not final_query_parts:
sys_msg = "⚠️ অনুগ্ৰহ কৰি প্ৰশ্ন লিখক, কিম্বা ছবি আপলোড কৰক।"
chat_history = chat_history + [["", sys_msg]]
return chat_history, user_state, None
full_query = "\n".join(final_query_parts)
conv = []
for u, b in chat_history:
if u:
conv.append(("Student", u))
if b:
conv.append(("Tutor", b))
is_math = is_likely_math(full_query)
if is_math:
math_answer = solve_math_expression(full_query)
combined_question = (
full_query
+ "\n\nগণিত প্ৰোগ্ৰামে এই ফলাফল দিছে:\n"
+ math_answer
+ "\n\nঅনুগ্ৰহ কৰি শ্রেণী ১০ ৰ শিক্ষাৰ্থীৰ বাবে সহজ ভাষাত ব্যাখ্যা কৰক।"
)
final_answer = llm_answer_with_rag(combined_question, conv)
else:
final_answer = llm_answer_with_rag(full_query, conv)
log_interaction(user_id, full_query, final_answer, is_math)
display_question = text_input or ocr_text or "(empty)"
chat_history = chat_history + [[display_question, final_answer]]
return chat_history, user_state, None
# ---------------------- Gradio UI ----------------------
# Wrap UI creation + launch in try/except so runtime errors are logged clearly
import traceback
try:
with gr.Blocks(title=APP_NAME, theme="soft") as demo:
gr.Markdown(
"""
# 🧭 জাজাবৰ – SEBA অসমীয়া ক্লাছ ১০ AI Tutor
- 📘 SEBA ক্লাছ ১০ পাঠ্যপুথিৰ ওপৰত ভিত্তি কৰি উত্তৰ
- 🗣️ টেক্স্ট + ছবি (OCR) ইনপুট
- 🧮 গণিত প্ৰশ্নৰ ধাপ-ধাপে সমাধান
- 👤 ইউজাৰ লগিন + প্ৰগতি (progress) সংৰক্ষণ
"""
)
user_state = gr.State({})
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 👤 লগিন")
username_inp = gr.Textbox(
label="নাম / ইউজাৰ আইডি",
placeholder="উদাহৰণ: abu10, student01 ...",
)
login_btn = gr.Button("✅ Login / লগিন")
stats_md = gr.Markdown("এতিয়ালৈকে লগিন হোৱা নাই।", elem_classes="stats-box")
gr.Markdown(
"""
### 💡 টিপছ
- "ক্লাছ ১০ গণিত: উদাহৰণ ৩.১ প্ৰশ্ন ২" – এই ধৰণৰ প্ৰশ্ন ভাল
- ফটো আপলোড করলে টেক্স্টটো OCR কৰি পঢ়িব চেষ্টা কৰা হয়
- সম্ভব হলে প্ৰশ্নটো অসমীয়াত সোধক 🙂
"""
)
with gr.Column(scale=3):
chat = gr.Chatbot(label="জাজাবৰ সৈতে কথোপকথন", height=500)
text_inp = gr.Textbox(
label="আপোনাৰ প্ৰশ্ন লিখক",
placeholder="উদাহৰণ: \"ক্লাছ ১০ অসমীয়া: অনুচ্ছেদ পাঠ ১ ৰ মূল বিষয় কি?\"",
lines=2,
)
with gr.Row():
# Use a gr.Image type compatible with this Gradio version: 'filepath' or 'pil' or 'numpy'
# 'filepath' returns a string path in Spaces; code above handles it.
image_inp = gr.Image(label="📷 প্ৰশ্নৰ ছবি (Optional)", type="filepath")
audio_inp = gr.Audio(label="🎙️ কণ্ঠস্বৰ প্ৰশ্ন (Stub — not used now)", type="numpy")
with gr.Row():
ask_btn = gr.Button("🤖 জাজাবৰক সোধক")
login_btn.click(login_user, inputs=[username_inp, user_state], outputs=[user_state, stats_md])
def wrapped_chat(text, image, audio, history, user_state_inner, username_inner):
if user_state_inner and username_inner and not user_state_inner.get("username"):
user_state_inner["username"] = username_inner
return chat_logic(username_inner, text, image, audio, history, user_state_inner)
ask_btn.click(
wrapped_chat,
inputs=[text_inp, image_inp, audio_inp, chat, user_state, username_inp],
outputs=[chat, user_state],
concurrency_limit=4,
)
# On Hugging Face Spaces localhost may be inaccessible from the container; create a shareable link.
# Using share=True here forces Gradio to create a public tunnel which Spaces allows.
demo.launch(share=True)
except Exception as e:
# Write full traceback to a file for debugging in Spaces logs and print to stdout
tb = traceback.format_exc()
print("--- Exception during UI startup ---")
print(tb)
with open("startup_error.log", "w") as f:
f.write(tb)
# Re-raise so the container shows the failure (useful for CI/Spaces logs)
raise
|