Spaces:
No application file
No application file
Kelsey Sterner
commited on
Commit
·
004b923
1
Parent(s):
42b9a99
init
Browse files- README.md +1 -1
- dviApp.py +143 -0
- requirements.txt +7 -0
README.md
CHANGED
|
@@ -8,5 +8,5 @@ sdk_version: 1.28.2
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
-
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
---
|
|
|
|
| 11 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 12 |
+
Dvi
|
dviApp.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import numpy as np
|
| 4 |
+
from streamlit_card import card
|
| 5 |
+
import yfinance as yf
|
| 6 |
+
import altair as alt
|
| 7 |
+
|
| 8 |
+
# Set the background color and opacity for the container
|
| 9 |
+
container_style = """
|
| 10 |
+
background-color: rgba(55, 65, 82, 0.7);
|
| 11 |
+
padding: 100px;
|
| 12 |
+
border-radius: 10px;
|
| 13 |
+
margin-top: 20px;
|
| 14 |
+
margin-bottom: 20px;
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
st.markdown("<h1 style='text-align: center;'>Volatility Indicator</h1>", unsafe_allow_html=True)
|
| 18 |
+
st.write(""" ### Economic Volitility Examination""")
|
| 19 |
+
# Create a translucent container
|
| 20 |
+
x = card(title="", text = "When we talk about stock volitility, we typically need fundamental data like company earning reports, interest rates, and technical analysis trends",
|
| 21 |
+
styles = {
|
| 22 |
+
"card": {
|
| 23 |
+
"width": "650px",
|
| 24 |
+
"height": "200px",
|
| 25 |
+
"background-color": "rgba(55, 65, 82, 1)",
|
| 26 |
+
"padding": "20px",
|
| 27 |
+
"margin-top": "20px",
|
| 28 |
+
#"margin-bottom": "20px",
|
| 29 |
+
},
|
| 30 |
+
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# Download historical stock data for Tesla
|
| 37 |
+
ticker = "TSLA"
|
| 38 |
+
start_date = "2021-09-29"
|
| 39 |
+
end_date = "2022-09-29"
|
| 40 |
+
|
| 41 |
+
stock_data = yf.download(ticker, start=start_date, end=end_date)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
# Calculate daily returns
|
| 46 |
+
stock_data["Daily_Return"] = stock_data["Close"].pct_change()
|
| 47 |
+
|
| 48 |
+
# Calculate historical volatility (standard deviation)
|
| 49 |
+
historical_volatility = stock_data["Daily_Return"].std()
|
| 50 |
+
|
| 51 |
+
# Streamlit app
|
| 52 |
+
st.markdown("<h1 style='text-align: center;'>Tesla Stock Volatility Analysis</h1>", unsafe_allow_html=True)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
# Display historical stock data
|
| 56 |
+
st.subheader("Historical Stock Data")
|
| 57 |
+
st.write(stock_data)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
stock_data = yf.download(ticker, start=start_date, end=end_date)
|
| 62 |
+
|
| 63 |
+
# Calculate daily returns
|
| 64 |
+
stock_data["Daily_Return"] = ((stock_data["Close"] / stock_data["Open"]) - 1)
|
| 65 |
+
notable = []
|
| 66 |
+
days = []
|
| 67 |
+
for day in stock_data["Daily_Return"]:
|
| 68 |
+
if day > 0.1:
|
| 69 |
+
notable.append(day)
|
| 70 |
+
days.append("Date")
|
| 71 |
+
elif day < -0.1:
|
| 72 |
+
notable.append(day)
|
| 73 |
+
days.append("Date")
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
# Line chart for stock prices
|
| 79 |
+
st.subheader("Tesla Stock Prices Over Time")
|
| 80 |
+
line_chart = alt.Chart(stock_data.reset_index()).mark_line().encode(
|
| 81 |
+
x="Date:T",
|
| 82 |
+
y="Daily_Return",
|
| 83 |
+
tooltip=["Date", "Daily_Return"]
|
| 84 |
+
).properties(width=800, height=400)
|
| 85 |
+
st.altair_chart(line_chart, use_container_width=True)
|
| 86 |
+
|
| 87 |
+
st.write("2021-11-09 00:00:00: \"Telsa fire in Stanford took 42 minutes to extinguish\" ")
|
| 88 |
+
st.write("2022-01-27 00:00:00: \"Tesla drops more than 11% as investors digest new vehicle delays\"")
|
| 89 |
+
st.write("2022-02-23 00:00:00: \"Tesla model Y wins EV award\"")
|
| 90 |
+
st.write("2022-04-26 00:00:00: \"Elon Musk says people might download their personalities onto a human robot constructed by Tesla\"")
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
st.markdown("<h1 style='text-align: center;'>Our Approach</h1>", unsafe_allow_html=True)
|
| 94 |
+
|
| 95 |
+
x = card(title="",
|
| 96 |
+
text = "How can we predict the potential social impact on stock volitility? Qualitative tabular data poses a challenge concerning data processing resources",
|
| 97 |
+
styles = {
|
| 98 |
+
"card": {
|
| 99 |
+
"width": "650px",
|
| 100 |
+
"height": "200px",
|
| 101 |
+
"background-color": "rgba(55, 65, 82, 1)",
|
| 102 |
+
"padding": "50px",
|
| 103 |
+
"margin-top": "10px",
|
| 104 |
+
"margin-bottom": "10px",
|
| 105 |
+
},
|
| 106 |
+
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
)
|
| 110 |
+
st.write("")
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
# Streamlit app
|
| 114 |
+
st.title('First Model')
|
| 115 |
+
model1 = card(title="",
|
| 116 |
+
text = "",
|
| 117 |
+
styles = {
|
| 118 |
+
"card": {
|
| 119 |
+
"width": "650px",
|
| 120 |
+
"height": "200px",
|
| 121 |
+
"margin-top": "10px",
|
| 122 |
+
"margin-bottom": "10px",
|
| 123 |
+
},
|
| 124 |
+
},
|
| 125 |
+
image="https://i.postimg.cc/Bn8q0Ddy/XBoost.png",
|
| 126 |
+
on_click=lambda: st.write("The model generating embeddings represent the data in the prompt. Each embedding captures an immense amount of training data that is then used to project desired data")
|
| 127 |
+
|
| 128 |
+
)
|
| 129 |
+
st.title('Second Model')
|
| 130 |
+
mod2 = card(title="",
|
| 131 |
+
text = "",
|
| 132 |
+
styles = {
|
| 133 |
+
"card": {
|
| 134 |
+
"width": "700px",
|
| 135 |
+
"height": "400px",
|
| 136 |
+
"margin-top": "20px",
|
| 137 |
+
"margin-bottom": "20px",
|
| 138 |
+
}
|
| 139 |
+
},
|
| 140 |
+
image="https://miro.medium.com/v2/resize:fit:976/1*oc1gaCFvgWXq_gHQFM63UQ.png",
|
| 141 |
+
on_click=lambda: st.write("A neural network learns to map input data to output by adjusting the strengths of connections (weights) between nodes during a training process. This enables the network to recognize patterns and make predictions on new data.")
|
| 142 |
+
|
| 143 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pandas
|
| 2 |
+
streamlit
|
| 3 |
+
numpy
|
| 4 |
+
streamlit_card
|
| 5 |
+
yfinance
|
| 6 |
+
altair
|
| 7 |
+
markdownlit
|