Spaces:
Sleeping
Sleeping
Jan Biermeyer
commited on
Commit
Β·
34fc1eb
1
Parent(s):
a905164
cpu optimization
Browse files- rag/model_loader.py +203 -60
- rag/{rag_m2max.py β rag.py} +29 -26
- requirements.txt +5 -1
rag/model_loader.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
SUPRA Enhanced Model Loader
|
| 4 |
-
Optimized model loading with MPS
|
| 5 |
"""
|
| 6 |
|
| 7 |
import torch
|
|
@@ -28,41 +28,43 @@ except ImportError:
|
|
| 28 |
logger.warning("β οΈ PEFT not available. LoRA adapter loading will be disabled.")
|
| 29 |
|
| 30 |
def setup_m2_max_optimizations():
|
| 31 |
-
"""Configure optimizations for
|
| 32 |
-
logger.info("
|
| 33 |
|
| 34 |
-
#
|
| 35 |
-
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
| 36 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 37 |
|
| 38 |
-
# Disable bitsandbytes for M2 Max (not needed with MPS)
|
| 39 |
-
os.environ["DISABLE_BITSANDBYTES"] = "1"
|
| 40 |
-
|
| 41 |
# Set up Hugging Face token from HUGGINGFACE_TOKEN
|
| 42 |
if os.environ.get("HUGGINGFACE_TOKEN") and not os.environ.get("HF_TOKEN"):
|
| 43 |
os.environ["HF_TOKEN"] = os.environ["HUGGINGFACE_TOKEN"]
|
| 44 |
logger.info("π Using HUGGINGFACE_TOKEN for Hugging Face authentication")
|
| 45 |
|
| 46 |
-
#
|
| 47 |
if torch.backends.mps.is_available():
|
| 48 |
-
logger.info("β
MPS (Metal Performance Shaders) available")
|
| 49 |
device = "mps"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
else:
|
| 51 |
-
logger.info("
|
| 52 |
device = "cpu"
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
torch.backends.mps.is_built()
|
| 56 |
|
| 57 |
logger.info(f"π§ Using device: {device}")
|
| 58 |
return device
|
| 59 |
|
| 60 |
@st.cache_resource
|
| 61 |
def load_enhanced_model_m2max() -> Tuple[AutoModelForCausalLM, AutoTokenizer]:
|
| 62 |
-
"""Load the enhanced SUPRA model
|
| 63 |
-
logger.info("π₯ Loading enhanced SUPRA model
|
| 64 |
|
| 65 |
-
# Setup
|
| 66 |
device = setup_m2_max_optimizations()
|
| 67 |
|
| 68 |
# Model paths - try local lora/ folder first (for deployment), then outputs directory
|
|
@@ -111,23 +113,23 @@ def load_enhanced_model_m2max() -> Tuple[AutoModelForCausalLM, AutoTokenizer]:
|
|
| 111 |
base_model_name = adapter_config.get("base_model_name_or_path")
|
| 112 |
logger.info(f"π Base model from adapter config: {base_model_name}")
|
| 113 |
|
| 114 |
-
#
|
| 115 |
-
# Check if we're on MPS (M2 Max) or CUDA
|
| 116 |
is_mps = torch.backends.mps.is_available()
|
|
|
|
| 117 |
|
| 118 |
if base_model_name and "llama" in base_model_name.lower():
|
| 119 |
if is_mps:
|
| 120 |
-
#
|
| 121 |
base_model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
| 122 |
else:
|
| 123 |
-
# CUDA: Use quantized Unsloth version
|
| 124 |
base_model_name = "unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit"
|
| 125 |
elif base_model_name and "mistral" in base_model_name.lower():
|
| 126 |
if is_mps:
|
| 127 |
-
#
|
| 128 |
base_model_name = "mistralai/Mistral-7B-Instruct-v0.3"
|
| 129 |
else:
|
| 130 |
-
# CUDA: Use quantized Unsloth version
|
| 131 |
base_model_name = "unsloth/Mistral-7B-Instruct-v0.3-bnb-4bit"
|
| 132 |
except Exception as e:
|
| 133 |
logger.warning(f"β οΈ Could not read adapter config: {e}")
|
|
@@ -137,6 +139,7 @@ def load_enhanced_model_m2max() -> Tuple[AutoModelForCausalLM, AutoTokenizer]:
|
|
| 137 |
if is_mps:
|
| 138 |
base_model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
| 139 |
else:
|
|
|
|
| 140 |
base_model_name = "unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit"
|
| 141 |
|
| 142 |
# Fallback to old checkpoint structure
|
|
@@ -163,9 +166,9 @@ def load_enhanced_model_m2max() -> Tuple[AutoModelForCausalLM, AutoTokenizer]:
|
|
| 163 |
if base_model_name is None:
|
| 164 |
is_mps = torch.backends.mps.is_available()
|
| 165 |
if is_mps:
|
| 166 |
-
base_model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct" #
|
| 167 |
else:
|
| 168 |
-
base_model_name = "unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit" # CUDA: quantized
|
| 169 |
|
| 170 |
if use_local:
|
| 171 |
logger.info(f"π Loading base model: {base_model_name}")
|
|
@@ -196,21 +199,72 @@ def load_enhanced_model_m2max() -> Tuple[AutoModelForCausalLM, AutoTokenizer]:
|
|
| 196 |
|
| 197 |
logger.info("β
Tokenizer loaded successfully")
|
| 198 |
|
| 199 |
-
# Load base model with
|
| 200 |
-
logger.info("π€ Loading base model with
|
| 201 |
# Use /workspace/.cache if WORKSPACE is set, otherwise use .cache relative to current dir
|
| 202 |
cache_dir = os.getenv("HF_HOME") or os.getenv("TRANSFORMERS_CACHE") or "/workspace/.cache/huggingface" if os.getenv("WORKSPACE") else ".cache/huggingface"
|
| 203 |
offload_dir = os.getenv("WORKSPACE", "") + "/.cache/offload" if os.getenv("WORKSPACE") else ".cache/offload"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 205 |
base_model_name,
|
| 206 |
-
|
| 207 |
-
torch_dtype=torch.float16, # Use float16 for memory efficiency
|
| 208 |
-
device_map="auto", # Let transformers handle device placement
|
| 209 |
-
offload_folder=offload_dir, # Allow CPU offload when needed
|
| 210 |
-
trust_remote_code=True,
|
| 211 |
-
low_cpu_mem_usage=True, # Optimize for M2 Max memory
|
| 212 |
-
load_in_8bit=False, # Disable 8-bit quantization (not needed for M2 Max)
|
| 213 |
-
load_in_4bit=False # Disable 4-bit quantization (not needed for M2 Max)
|
| 214 |
)
|
| 215 |
|
| 216 |
logger.info("β
Base model loaded successfully")
|
|
@@ -249,21 +303,64 @@ def load_enhanced_model_m2max() -> Tuple[AutoModelForCausalLM, AutoTokenizer]:
|
|
| 249 |
|
| 250 |
logger.info("β
Tokenizer loaded successfully")
|
| 251 |
|
| 252 |
-
# Load base model (no LoRA adapter)
|
| 253 |
-
logger.info("π€ Loading base model with
|
| 254 |
# Use /workspace/.cache if WORKSPACE is set, otherwise use .cache relative to current dir
|
| 255 |
cache_dir = os.getenv("HF_HOME") or os.getenv("TRANSFORMERS_CACHE") or "/workspace/.cache/huggingface" if os.getenv("WORKSPACE") else ".cache/huggingface"
|
| 256 |
offload_dir = os.getenv("WORKSPACE", "") + "/.cache/offload" if os.getenv("WORKSPACE") else ".cache/offload"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
model = AutoModelForCausalLM.from_pretrained(
|
| 258 |
base_model_name,
|
| 259 |
-
|
| 260 |
-
torch_dtype=torch.float16,
|
| 261 |
-
device_map="auto",
|
| 262 |
-
offload_folder=offload_dir,
|
| 263 |
-
trust_remote_code=True,
|
| 264 |
-
low_cpu_mem_usage=True,
|
| 265 |
-
load_in_8bit=False,
|
| 266 |
-
load_in_4bit=False
|
| 267 |
)
|
| 268 |
|
| 269 |
logger.info("β
Base model loaded successfully (no fine-tuning)")
|
|
@@ -287,17 +384,40 @@ def load_enhanced_model_m2max() -> Tuple[AutoModelForCausalLM, AutoTokenizer]:
|
|
| 287 |
if tokenizer.pad_token is None:
|
| 288 |
tokenizer.pad_token = tokenizer.eos_token
|
| 289 |
|
| 290 |
-
# Load model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
model = AutoModelForCausalLM.from_pretrained(
|
| 292 |
base_model_name,
|
| 293 |
-
|
| 294 |
-
torch_dtype=torch.float16,
|
| 295 |
-
device_map="auto",
|
| 296 |
-
offload_folder=offload_dir,
|
| 297 |
-
trust_remote_code=True,
|
| 298 |
-
low_cpu_mem_usage=True,
|
| 299 |
-
load_in_8bit=False, # Disable 8-bit quantization (not needed for M2 Max)
|
| 300 |
-
load_in_4bit=False # Disable 4-bit quantization (not needed for M2 Max)
|
| 301 |
)
|
| 302 |
|
| 303 |
logger.info("β
Model loaded from Hugging Face successfully")
|
|
@@ -338,6 +458,7 @@ def get_model_info() -> dict:
|
|
| 338 |
|
| 339 |
# Determine base model based on device
|
| 340 |
is_mps = torch.backends.mps.is_available()
|
|
|
|
| 341 |
if tiny_models and tiny_models[0].exists() or small_models and small_models[0].exists() or prod_models and prod_models[0].exists():
|
| 342 |
base_model = "meta-llama/Meta-Llama-3.1-8B-Instruct" if is_mps else "unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit"
|
| 343 |
else:
|
|
@@ -366,7 +487,7 @@ def generate_response_optimized(
|
|
| 366 |
temperature: float = 0.7, # Adjusted for better quality
|
| 367 |
top_p: float = 0.9
|
| 368 |
) -> str:
|
| 369 |
-
"""Generate response with
|
| 370 |
try:
|
| 371 |
# Import inference utilities
|
| 372 |
from .inference_utils import create_stopping_criteria, ensure_supra_close
|
|
@@ -411,18 +532,40 @@ def generate_response_optimized(
|
|
| 411 |
padding=False
|
| 412 |
)
|
| 413 |
|
| 414 |
-
# Move to same device as model
|
| 415 |
-
|
| 416 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 417 |
|
| 418 |
# Create stopping criteria for full-sentence stopping
|
| 419 |
stopping_criteria = create_stopping_criteria(tokenizer)
|
| 420 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
# Generate response with full-sentence stopping
|
| 422 |
with torch.no_grad():
|
| 423 |
outputs = model.generate(
|
| 424 |
**inputs,
|
| 425 |
-
max_new_tokens=
|
| 426 |
temperature=temperature,
|
| 427 |
top_p=top_p,
|
| 428 |
do_sample=True,
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
SUPRA Enhanced Model Loader
|
| 4 |
+
Optimized model loading with CPU/MPS/CUDA support and Streamlit caching
|
| 5 |
"""
|
| 6 |
|
| 7 |
import torch
|
|
|
|
| 28 |
logger.warning("β οΈ PEFT not available. LoRA adapter loading will be disabled.")
|
| 29 |
|
| 30 |
def setup_m2_max_optimizations():
|
| 31 |
+
"""Configure optimizations for CPU/MPS/CUDA."""
|
| 32 |
+
logger.info("π§ Setting up device optimizations for model loading...")
|
| 33 |
|
| 34 |
+
# Environment variables
|
|
|
|
| 35 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 36 |
|
|
|
|
|
|
|
|
|
|
| 37 |
# Set up Hugging Face token from HUGGINGFACE_TOKEN
|
| 38 |
if os.environ.get("HUGGINGFACE_TOKEN") and not os.environ.get("HF_TOKEN"):
|
| 39 |
os.environ["HF_TOKEN"] = os.environ["HUGGINGFACE_TOKEN"]
|
| 40 |
logger.info("π Using HUGGINGFACE_TOKEN for Hugging Face authentication")
|
| 41 |
|
| 42 |
+
# Detect device: MPS > CUDA > CPU
|
| 43 |
if torch.backends.mps.is_available():
|
| 44 |
+
logger.info("β
MPS (Metal Performance Shaders) available - using MPS")
|
| 45 |
device = "mps"
|
| 46 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
| 47 |
+
os.environ["DISABLE_BITSANDBYTES"] = "1" # Disable for MPS
|
| 48 |
+
torch.backends.mps.is_built()
|
| 49 |
+
elif torch.cuda.is_available():
|
| 50 |
+
logger.info("β
CUDA available - using GPU")
|
| 51 |
+
device = "cuda"
|
| 52 |
+
os.environ.pop("DISABLE_BITSANDBYTES", None) # Enable bitsandbytes for CUDA
|
| 53 |
else:
|
| 54 |
+
logger.info("π» CPU detected - enabling CPU optimizations")
|
| 55 |
device = "cpu"
|
| 56 |
+
os.environ.pop("DISABLE_BITSANDBYTES", None) # Enable bitsandbytes for CPU
|
| 57 |
+
os.environ.pop("PYTORCH_ENABLE_MPS_FALLBACK", None)
|
|
|
|
| 58 |
|
| 59 |
logger.info(f"π§ Using device: {device}")
|
| 60 |
return device
|
| 61 |
|
| 62 |
@st.cache_resource
|
| 63 |
def load_enhanced_model_m2max() -> Tuple[AutoModelForCausalLM, AutoTokenizer]:
|
| 64 |
+
"""Load the enhanced SUPRA model with device-specific optimizations (CPU/MPS/CUDA) with caching."""
|
| 65 |
+
logger.info("π₯ Loading enhanced SUPRA model with device optimizations...")
|
| 66 |
|
| 67 |
+
# Setup device optimizations
|
| 68 |
device = setup_m2_max_optimizations()
|
| 69 |
|
| 70 |
# Model paths - try local lora/ folder first (for deployment), then outputs directory
|
|
|
|
| 113 |
base_model_name = adapter_config.get("base_model_name_or_path")
|
| 114 |
logger.info(f"π Base model from adapter config: {base_model_name}")
|
| 115 |
|
| 116 |
+
# Select model version based on device: non-quantized for MPS, quantized for CPU/CUDA
|
|
|
|
| 117 |
is_mps = torch.backends.mps.is_available()
|
| 118 |
+
is_cpu = not is_mps and not torch.cuda.is_available()
|
| 119 |
|
| 120 |
if base_model_name and "llama" in base_model_name.lower():
|
| 121 |
if is_mps:
|
| 122 |
+
# MPS: Use non-quantized model (no bitsandbytes needed)
|
| 123 |
base_model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
| 124 |
else:
|
| 125 |
+
# CPU/CUDA: Use quantized Unsloth version
|
| 126 |
base_model_name = "unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit"
|
| 127 |
elif base_model_name and "mistral" in base_model_name.lower():
|
| 128 |
if is_mps:
|
| 129 |
+
# MPS: Use non-quantized model
|
| 130 |
base_model_name = "mistralai/Mistral-7B-Instruct-v0.3"
|
| 131 |
else:
|
| 132 |
+
# CPU/CUDA: Use quantized Unsloth version
|
| 133 |
base_model_name = "unsloth/Mistral-7B-Instruct-v0.3-bnb-4bit"
|
| 134 |
except Exception as e:
|
| 135 |
logger.warning(f"β οΈ Could not read adapter config: {e}")
|
|
|
|
| 139 |
if is_mps:
|
| 140 |
base_model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
| 141 |
else:
|
| 142 |
+
# CPU/CUDA: Use quantized version
|
| 143 |
base_model_name = "unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit"
|
| 144 |
|
| 145 |
# Fallback to old checkpoint structure
|
|
|
|
| 166 |
if base_model_name is None:
|
| 167 |
is_mps = torch.backends.mps.is_available()
|
| 168 |
if is_mps:
|
| 169 |
+
base_model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct" # MPS: non-quantized
|
| 170 |
else:
|
| 171 |
+
base_model_name = "unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit" # CPU/CUDA: quantized
|
| 172 |
|
| 173 |
if use_local:
|
| 174 |
logger.info(f"π Loading base model: {base_model_name}")
|
|
|
|
| 199 |
|
| 200 |
logger.info("β
Tokenizer loaded successfully")
|
| 201 |
|
| 202 |
+
# Load base model with device-specific optimizations
|
| 203 |
+
logger.info("π€ Loading base model with device optimizations...")
|
| 204 |
# Use /workspace/.cache if WORKSPACE is set, otherwise use .cache relative to current dir
|
| 205 |
cache_dir = os.getenv("HF_HOME") or os.getenv("TRANSFORMERS_CACHE") or "/workspace/.cache/huggingface" if os.getenv("WORKSPACE") else ".cache/huggingface"
|
| 206 |
offload_dir = os.getenv("WORKSPACE", "") + "/.cache/offload" if os.getenv("WORKSPACE") else ".cache/offload"
|
| 207 |
+
|
| 208 |
+
# Detect device type for optimization
|
| 209 |
+
is_cpu = device == "cpu"
|
| 210 |
+
is_mps = device == "mps"
|
| 211 |
+
is_cuda = device == "cuda"
|
| 212 |
+
|
| 213 |
+
# Configure quantization for CPU
|
| 214 |
+
quantization_config = None
|
| 215 |
+
if is_cpu:
|
| 216 |
+
try:
|
| 217 |
+
from transformers import BitsAndBytesConfig
|
| 218 |
+
quantization_config = BitsAndBytesConfig(
|
| 219 |
+
load_in_8bit=True,
|
| 220 |
+
llm_int8_enable_fp32_cpu_offload=True
|
| 221 |
+
)
|
| 222 |
+
logger.info("π» Using 8-bit quantization for CPU")
|
| 223 |
+
except ImportError:
|
| 224 |
+
logger.warning("β οΈ bitsandbytes not available, loading without quantization")
|
| 225 |
+
|
| 226 |
+
# Set dtype and quantization settings based on device
|
| 227 |
+
if is_cpu:
|
| 228 |
+
torch_dtype = torch.float32 # CPU: use float32
|
| 229 |
+
# If quantization_config is provided, don't also pass load_in_8bit
|
| 230 |
+
load_in_8bit = False if quantization_config else False
|
| 231 |
+
load_in_4bit = False
|
| 232 |
+
elif is_mps:
|
| 233 |
+
torch_dtype = torch.float16 # MPS: use float16
|
| 234 |
+
load_in_8bit = False
|
| 235 |
+
load_in_4bit = False
|
| 236 |
+
else: # CUDA
|
| 237 |
+
torch_dtype = torch.float16 # CUDA: use float16
|
| 238 |
+
load_in_8bit = False # CUDA can use 4-bit if needed
|
| 239 |
+
load_in_4bit = False
|
| 240 |
+
|
| 241 |
+
# Build model loading kwargs
|
| 242 |
+
model_kwargs = {
|
| 243 |
+
"cache_dir": cache_dir,
|
| 244 |
+
"torch_dtype": torch_dtype,
|
| 245 |
+
"trust_remote_code": True,
|
| 246 |
+
"low_cpu_mem_usage": True,
|
| 247 |
+
}
|
| 248 |
+
|
| 249 |
+
# Add device-specific settings
|
| 250 |
+
if is_cpu:
|
| 251 |
+
if quantization_config:
|
| 252 |
+
model_kwargs["quantization_config"] = quantization_config
|
| 253 |
+
# For CPU, don't use device_map (model stays on CPU)
|
| 254 |
+
model_kwargs["offload_folder"] = offload_dir
|
| 255 |
+
else:
|
| 256 |
+
model_kwargs["device_map"] = "auto"
|
| 257 |
+
if not is_mps: # For CUDA, we can add offload if needed
|
| 258 |
+
model_kwargs["offload_folder"] = offload_dir
|
| 259 |
+
|
| 260 |
+
# Add quantization flags only if quantization_config is None
|
| 261 |
+
if not quantization_config:
|
| 262 |
+
model_kwargs["load_in_8bit"] = load_in_8bit
|
| 263 |
+
model_kwargs["load_in_4bit"] = load_in_4bit
|
| 264 |
+
|
| 265 |
base_model = AutoModelForCausalLM.from_pretrained(
|
| 266 |
base_model_name,
|
| 267 |
+
**model_kwargs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
)
|
| 269 |
|
| 270 |
logger.info("β
Base model loaded successfully")
|
|
|
|
| 303 |
|
| 304 |
logger.info("β
Tokenizer loaded successfully")
|
| 305 |
|
| 306 |
+
# Load base model (no LoRA adapter) with device-specific optimizations
|
| 307 |
+
logger.info("π€ Loading base model with device optimizations (no fine-tuning)...")
|
| 308 |
# Use /workspace/.cache if WORKSPACE is set, otherwise use .cache relative to current dir
|
| 309 |
cache_dir = os.getenv("HF_HOME") or os.getenv("TRANSFORMERS_CACHE") or "/workspace/.cache/huggingface" if os.getenv("WORKSPACE") else ".cache/huggingface"
|
| 310 |
offload_dir = os.getenv("WORKSPACE", "") + "/.cache/offload" if os.getenv("WORKSPACE") else ".cache/offload"
|
| 311 |
+
|
| 312 |
+
# Detect device type for optimization
|
| 313 |
+
is_cpu = device == "cpu"
|
| 314 |
+
is_mps = device == "mps"
|
| 315 |
+
|
| 316 |
+
# Configure quantization for CPU
|
| 317 |
+
quantization_config = None
|
| 318 |
+
if is_cpu:
|
| 319 |
+
try:
|
| 320 |
+
from transformers import BitsAndBytesConfig
|
| 321 |
+
quantization_config = BitsAndBytesConfig(
|
| 322 |
+
load_in_8bit=True,
|
| 323 |
+
llm_int8_enable_fp32_cpu_offload=True
|
| 324 |
+
)
|
| 325 |
+
logger.info("π» Using 8-bit quantization for CPU")
|
| 326 |
+
except ImportError:
|
| 327 |
+
logger.warning("β οΈ bitsandbytes not available, loading without quantization")
|
| 328 |
+
|
| 329 |
+
# Set dtype and quantization settings based on device
|
| 330 |
+
if is_cpu:
|
| 331 |
+
torch_dtype = torch.float32
|
| 332 |
+
load_in_8bit = False if quantization_config else False
|
| 333 |
+
load_in_4bit = False
|
| 334 |
+
else:
|
| 335 |
+
torch_dtype = torch.float16
|
| 336 |
+
load_in_8bit = False
|
| 337 |
+
load_in_4bit = False
|
| 338 |
+
|
| 339 |
+
# Build model loading kwargs
|
| 340 |
+
model_kwargs = {
|
| 341 |
+
"cache_dir": cache_dir,
|
| 342 |
+
"torch_dtype": torch_dtype,
|
| 343 |
+
"trust_remote_code": True,
|
| 344 |
+
"low_cpu_mem_usage": True,
|
| 345 |
+
}
|
| 346 |
+
|
| 347 |
+
# Add device-specific settings
|
| 348 |
+
if is_cpu:
|
| 349 |
+
if quantization_config:
|
| 350 |
+
model_kwargs["quantization_config"] = quantization_config
|
| 351 |
+
model_kwargs["offload_folder"] = offload_dir
|
| 352 |
+
else:
|
| 353 |
+
model_kwargs["device_map"] = "auto"
|
| 354 |
+
model_kwargs["offload_folder"] = offload_dir
|
| 355 |
+
|
| 356 |
+
# Add quantization flags only if quantization_config is None
|
| 357 |
+
if not quantization_config:
|
| 358 |
+
model_kwargs["load_in_8bit"] = load_in_8bit
|
| 359 |
+
model_kwargs["load_in_4bit"] = load_in_4bit
|
| 360 |
+
|
| 361 |
model = AutoModelForCausalLM.from_pretrained(
|
| 362 |
base_model_name,
|
| 363 |
+
**model_kwargs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
)
|
| 365 |
|
| 366 |
logger.info("β
Base model loaded successfully (no fine-tuning)")
|
|
|
|
| 384 |
if tokenizer.pad_token is None:
|
| 385 |
tokenizer.pad_token = tokenizer.eos_token
|
| 386 |
|
| 387 |
+
# Load model with device-specific optimizations (fallback code - usually not used)
|
| 388 |
+
is_cpu = device == "cpu"
|
| 389 |
+
quantization_config = None
|
| 390 |
+
if is_cpu:
|
| 391 |
+
try:
|
| 392 |
+
from transformers import BitsAndBytesConfig
|
| 393 |
+
quantization_config = BitsAndBytesConfig(
|
| 394 |
+
load_in_8bit=True,
|
| 395 |
+
llm_int8_enable_fp32_cpu_offload=True
|
| 396 |
+
)
|
| 397 |
+
except ImportError:
|
| 398 |
+
pass
|
| 399 |
+
|
| 400 |
+
# Build model loading kwargs
|
| 401 |
+
model_kwargs = {
|
| 402 |
+
"cache_dir": cache_dir,
|
| 403 |
+
"torch_dtype": torch.float32 if is_cpu else torch.float16,
|
| 404 |
+
"trust_remote_code": True,
|
| 405 |
+
"low_cpu_mem_usage": True,
|
| 406 |
+
}
|
| 407 |
+
|
| 408 |
+
if is_cpu:
|
| 409 |
+
if quantization_config:
|
| 410 |
+
model_kwargs["quantization_config"] = quantization_config
|
| 411 |
+
model_kwargs["offload_folder"] = offload_dir
|
| 412 |
+
else:
|
| 413 |
+
model_kwargs["device_map"] = "auto"
|
| 414 |
+
model_kwargs["offload_folder"] = offload_dir
|
| 415 |
+
model_kwargs["load_in_8bit"] = False
|
| 416 |
+
model_kwargs["load_in_4bit"] = False
|
| 417 |
+
|
| 418 |
model = AutoModelForCausalLM.from_pretrained(
|
| 419 |
base_model_name,
|
| 420 |
+
**model_kwargs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
)
|
| 422 |
|
| 423 |
logger.info("β
Model loaded from Hugging Face successfully")
|
|
|
|
| 458 |
|
| 459 |
# Determine base model based on device
|
| 460 |
is_mps = torch.backends.mps.is_available()
|
| 461 |
+
is_cpu = not is_mps and not torch.cuda.is_available()
|
| 462 |
if tiny_models and tiny_models[0].exists() or small_models and small_models[0].exists() or prod_models and prod_models[0].exists():
|
| 463 |
base_model = "meta-llama/Meta-Llama-3.1-8B-Instruct" if is_mps else "unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit"
|
| 464 |
else:
|
|
|
|
| 487 |
temperature: float = 0.7, # Adjusted for better quality
|
| 488 |
top_p: float = 0.9
|
| 489 |
) -> str:
|
| 490 |
+
"""Generate response with device-specific optimizations and full-sentence stopping."""
|
| 491 |
try:
|
| 492 |
# Import inference utilities
|
| 493 |
from .inference_utils import create_stopping_criteria, ensure_supra_close
|
|
|
|
| 532 |
padding=False
|
| 533 |
)
|
| 534 |
|
| 535 |
+
# Move to same device as model (handle quantized models on CPU)
|
| 536 |
+
try:
|
| 537 |
+
device = next(model.parameters()).device
|
| 538 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 539 |
+
except (StopIteration, AttributeError):
|
| 540 |
+
# Quantized models on CPU might not have .device on parameters
|
| 541 |
+
# Check if model has a device attribute or default to CPU
|
| 542 |
+
if hasattr(model, 'device'):
|
| 543 |
+
device = model.device
|
| 544 |
+
else:
|
| 545 |
+
device = torch.device('cpu')
|
| 546 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 547 |
|
| 548 |
# Create stopping criteria for full-sentence stopping
|
| 549 |
stopping_criteria = create_stopping_criteria(tokenizer)
|
| 550 |
|
| 551 |
+
# Reduce max_new_tokens for CPU to optimize performance
|
| 552 |
+
try:
|
| 553 |
+
model_device = next(model.parameters()).device if hasattr(model, 'parameters') else None
|
| 554 |
+
is_cpu_device = model_device is None or str(model_device) == 'cpu'
|
| 555 |
+
except (StopIteration, AttributeError):
|
| 556 |
+
is_cpu_device = True
|
| 557 |
+
|
| 558 |
+
# Adjust max_new_tokens for CPU (reduce for faster inference)
|
| 559 |
+
effective_max_tokens = max_new_tokens
|
| 560 |
+
if is_cpu_device and max_new_tokens > 512:
|
| 561 |
+
effective_max_tokens = 512
|
| 562 |
+
logger.info(f"π» CPU detected: reducing max_new_tokens from {max_new_tokens} to {effective_max_tokens} for faster inference")
|
| 563 |
+
|
| 564 |
# Generate response with full-sentence stopping
|
| 565 |
with torch.no_grad():
|
| 566 |
outputs = model.generate(
|
| 567 |
**inputs,
|
| 568 |
+
max_new_tokens=effective_max_tokens,
|
| 569 |
temperature=temperature,
|
| 570 |
top_p=top_p,
|
| 571 |
do_sample=True,
|
rag/{rag_m2max.py β rag.py}
RENAMED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
SUPRA RAG System with
|
| 4 |
-
Optimized for Apple Silicon with efficient memory management
|
| 5 |
"""
|
| 6 |
|
| 7 |
import json
|
|
@@ -18,7 +18,7 @@ import logging
|
|
| 18 |
logging.basicConfig(level=logging.INFO)
|
| 19 |
logger = logging.getLogger(__name__)
|
| 20 |
|
| 21 |
-
class
|
| 22 |
def __init__(self, rag_data_path: str = None):
|
| 23 |
# Default RAG data path (for HF Spaces deployment)
|
| 24 |
if rag_data_path is None:
|
|
@@ -37,17 +37,19 @@ class SupraRAGM2Max:
|
|
| 37 |
rag_data_path = "data/processed/rag_seeds/rag_seeds.jsonl"
|
| 38 |
self.rag_data_path = Path(rag_data_path)
|
| 39 |
|
| 40 |
-
#
|
| 41 |
-
self.
|
| 42 |
|
| 43 |
-
# Initialize ChromaDB with
|
| 44 |
self.client = chromadb.Client()
|
| 45 |
self.collection_name = "supra_knowledge"
|
| 46 |
|
| 47 |
-
# Use efficient embedding model for
|
|
|
|
|
|
|
| 48 |
self.embedding_model = SentenceTransformer(
|
| 49 |
'all-MiniLM-L6-v2',
|
| 50 |
-
device=
|
| 51 |
)
|
| 52 |
|
| 53 |
# Initialize or load collection
|
|
@@ -71,29 +73,30 @@ class SupraRAGM2Max:
|
|
| 71 |
self.collection = self.client.create_collection(self.collection_name)
|
| 72 |
self._load_rag_documents()
|
| 73 |
|
| 74 |
-
def
|
| 75 |
-
"""Configure optimizations for
|
| 76 |
-
logger.info("
|
| 77 |
|
| 78 |
-
#
|
| 79 |
-
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
| 80 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 81 |
|
| 82 |
-
#
|
| 83 |
if torch.backends.mps.is_available():
|
| 84 |
-
logger.info("β
MPS (Metal Performance Shaders) available")
|
| 85 |
self.device = "mps"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
else:
|
| 87 |
-
logger.info("
|
| 88 |
self.device = "cpu"
|
| 89 |
|
| 90 |
-
# Optimize PyTorch for M2 Max
|
| 91 |
-
torch.backends.mps.is_built()
|
| 92 |
-
|
| 93 |
logger.info(f"π§ Using device: {self.device}")
|
| 94 |
|
| 95 |
def _load_rag_documents(self):
|
| 96 |
-
"""Load RAG documents from JSONL file with
|
| 97 |
if not self.rag_data_path.exists():
|
| 98 |
logger.warning("β οΈ RAG data file not found")
|
| 99 |
if st:
|
|
@@ -112,7 +115,7 @@ class SupraRAGM2Max:
|
|
| 112 |
try:
|
| 113 |
doc = json.loads(line)
|
| 114 |
if 'content' in doc and 'id' in doc:
|
| 115 |
-
# Truncate content for
|
| 116 |
content = doc['content']
|
| 117 |
if len(content) > 2000: # Limit content length
|
| 118 |
content = content[:2000] + "..."
|
|
@@ -131,8 +134,8 @@ class SupraRAGM2Max:
|
|
| 131 |
logger.warning(f"β οΈ Skipping line {line_num}: JSON decode error - {e}")
|
| 132 |
|
| 133 |
if documents:
|
| 134 |
-
# Add to ChromaDB with batch processing
|
| 135 |
-
batch_size = 50 # Smaller batches for
|
| 136 |
for i in range(0, len(documents), batch_size):
|
| 137 |
batch_docs = documents[i:i+batch_size]
|
| 138 |
batch_metadatas = metadatas[i:i+batch_size]
|
|
@@ -265,13 +268,13 @@ class SupraRAGM2Max:
|
|
| 265 |
st.error(f"Error generating response: {e}")
|
| 266 |
return f"I apologize, but I encountered an error while generating a response: {e}"
|
| 267 |
|
| 268 |
-
# Global RAG instance with
|
| 269 |
@st.cache_resource
|
| 270 |
def get_supra_rag_m2max():
|
| 271 |
-
"""Get cached SUPRA RAG instance optimized for
|
| 272 |
return SupraRAGM2Max()
|
| 273 |
|
| 274 |
# Backward compatibility
|
| 275 |
def get_supra_rag():
|
| 276 |
-
"""Backward compatible function that returns
|
| 277 |
return get_supra_rag_m2max()
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
SUPRA RAG System with CPU/MPS/CUDA Optimizations
|
| 4 |
+
Optimized for CPU (HF Spaces), MPS (Apple Silicon), and CUDA with efficient memory management
|
| 5 |
"""
|
| 6 |
|
| 7 |
import json
|
|
|
|
| 18 |
logging.basicConfig(level=logging.INFO)
|
| 19 |
logger = logging.getLogger(__name__)
|
| 20 |
|
| 21 |
+
class SupraRAG:
|
| 22 |
def __init__(self, rag_data_path: str = None):
|
| 23 |
# Default RAG data path (for HF Spaces deployment)
|
| 24 |
if rag_data_path is None:
|
|
|
|
| 37 |
rag_data_path = "data/processed/rag_seeds/rag_seeds.jsonl"
|
| 38 |
self.rag_data_path = Path(rag_data_path)
|
| 39 |
|
| 40 |
+
# Device-specific optimizations
|
| 41 |
+
self._setup_device_optimizations()
|
| 42 |
|
| 43 |
+
# Initialize ChromaDB with device optimizations
|
| 44 |
self.client = chromadb.Client()
|
| 45 |
self.collection_name = "supra_knowledge"
|
| 46 |
|
| 47 |
+
# Use efficient embedding model (CPU for HF Spaces free tier)
|
| 48 |
+
# CPU is optimal for sentence-transformers on CPU-only deployments
|
| 49 |
+
embedding_device = 'cpu' if self.device == 'cpu' else self.device
|
| 50 |
self.embedding_model = SentenceTransformer(
|
| 51 |
'all-MiniLM-L6-v2',
|
| 52 |
+
device=embedding_device
|
| 53 |
)
|
| 54 |
|
| 55 |
# Initialize or load collection
|
|
|
|
| 73 |
self.collection = self.client.create_collection(self.collection_name)
|
| 74 |
self._load_rag_documents()
|
| 75 |
|
| 76 |
+
def _setup_device_optimizations(self):
|
| 77 |
+
"""Configure optimizations for CPU/MPS/CUDA."""
|
| 78 |
+
logger.info("π§ Setting up device optimizations...")
|
| 79 |
|
| 80 |
+
# Environment variables
|
|
|
|
| 81 |
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 82 |
|
| 83 |
+
# Detect device: MPS > CUDA > CPU
|
| 84 |
if torch.backends.mps.is_available():
|
| 85 |
+
logger.info("β
MPS (Metal Performance Shaders) available - using MPS")
|
| 86 |
self.device = "mps"
|
| 87 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
|
| 88 |
+
torch.backends.mps.is_built()
|
| 89 |
+
elif torch.cuda.is_available():
|
| 90 |
+
logger.info("β
CUDA available - using GPU")
|
| 91 |
+
self.device = "cuda"
|
| 92 |
else:
|
| 93 |
+
logger.info("π» CPU detected - using CPU optimizations")
|
| 94 |
self.device = "cpu"
|
| 95 |
|
|
|
|
|
|
|
|
|
|
| 96 |
logger.info(f"π§ Using device: {self.device}")
|
| 97 |
|
| 98 |
def _load_rag_documents(self):
|
| 99 |
+
"""Load RAG documents from JSONL file with device optimizations."""
|
| 100 |
if not self.rag_data_path.exists():
|
| 101 |
logger.warning("β οΈ RAG data file not found")
|
| 102 |
if st:
|
|
|
|
| 115 |
try:
|
| 116 |
doc = json.loads(line)
|
| 117 |
if 'content' in doc and 'id' in doc:
|
| 118 |
+
# Truncate content for memory efficiency
|
| 119 |
content = doc['content']
|
| 120 |
if len(content) > 2000: # Limit content length
|
| 121 |
content = content[:2000] + "..."
|
|
|
|
| 134 |
logger.warning(f"β οΈ Skipping line {line_num}: JSON decode error - {e}")
|
| 135 |
|
| 136 |
if documents:
|
| 137 |
+
# Add to ChromaDB with batch processing
|
| 138 |
+
batch_size = 50 # Smaller batches for memory efficiency
|
| 139 |
for i in range(0, len(documents), batch_size):
|
| 140 |
batch_docs = documents[i:i+batch_size]
|
| 141 |
batch_metadatas = metadatas[i:i+batch_size]
|
|
|
|
| 268 |
st.error(f"Error generating response: {e}")
|
| 269 |
return f"I apologize, but I encountered an error while generating a response: {e}"
|
| 270 |
|
| 271 |
+
# Global RAG instance with device-specific optimizations
|
| 272 |
@st.cache_resource
|
| 273 |
def get_supra_rag_m2max():
|
| 274 |
+
"""Get cached SUPRA RAG instance optimized for CPU/MPS/CUDA."""
|
| 275 |
return SupraRAGM2Max()
|
| 276 |
|
| 277 |
# Backward compatibility
|
| 278 |
def get_supra_rag():
|
| 279 |
+
"""Backward compatible function that returns device-optimized RAG."""
|
| 280 |
return get_supra_rag_m2max()
|
requirements.txt
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
# SUPRA-Nexus RAG UI Dependencies
|
| 2 |
-
# For Hugging Face Spaces Deployment
|
| 3 |
|
| 4 |
# Streamlit UI Framework
|
| 5 |
streamlit>=1.28.0
|
|
@@ -15,6 +15,10 @@ torch>=2.0.0
|
|
| 15 |
# PEFT for LoRA loading
|
| 16 |
peft>=0.6.0
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
# NLP utilities
|
| 19 |
nltk>=3.8.0
|
| 20 |
|
|
|
|
| 1 |
# SUPRA-Nexus RAG UI Dependencies
|
| 2 |
+
# For Hugging Face Spaces Deployment (CPU Optimized)
|
| 3 |
|
| 4 |
# Streamlit UI Framework
|
| 5 |
streamlit>=1.28.0
|
|
|
|
| 15 |
# PEFT for LoRA loading
|
| 16 |
peft>=0.6.0
|
| 17 |
|
| 18 |
+
# CPU Optimizations
|
| 19 |
+
accelerate>=0.30.0 # For CPU inference optimization
|
| 20 |
+
bitsandbytes>=0.43.0 # For 8-bit quantization (CPU compatible)
|
| 21 |
+
|
| 22 |
# NLP utilities
|
| 23 |
nltk>=3.8.0
|
| 24 |
|