|
|
import math |
|
|
import warnings |
|
|
from typing import List, Optional, Union, Dict, Any, Tuple |
|
|
import os |
|
|
import re |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
|
|
|
from transformers.tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy |
|
|
from transformers.utils import TensorType, logging |
|
|
from .vibevoice_tokenizer_processor import AudioNormalizer |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
class VibeVoiceStreamingProcessor: |
|
|
r""" |
|
|
Constructs a VibeVoice Streaming processor which wraps a VibeVoice tokenizer and audio processor into a single processor. |
|
|
|
|
|
Args: |
|
|
tokenizer (`VibeVoiceTextTokenizer` or `VibeVoiceTextTokenizerFast`): |
|
|
The tokenizer for text processing. |
|
|
audio_processor (`VibeVoiceTokenizerProcessor`): |
|
|
The audio processor for speech processing. |
|
|
speech_tok_compress_ratio (`int`, *optional*, defaults to 3200): |
|
|
The compression ratio for speech tokenization. |
|
|
db_normalize (`bool`, *optional*, defaults to True): |
|
|
Whether to apply decibel normalization to audio inputs. |
|
|
""" |
|
|
|
|
|
def __init__(self, tokenizer=None, audio_processor=None, speech_tok_compress_ratio=3200, db_normalize=True, **kwargs): |
|
|
self.tokenizer = tokenizer |
|
|
self.audio_processor = audio_processor |
|
|
self.speech_tok_compress_ratio = speech_tok_compress_ratio |
|
|
self.db_normalize = db_normalize |
|
|
self.audio_normalizer = AudioNormalizer() if db_normalize else None |
|
|
|
|
|
@classmethod |
|
|
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): |
|
|
""" |
|
|
Instantiate a VibeVoiceStreamingProcessor from a pretrained VibeVoice Streaming processor. |
|
|
|
|
|
Args: |
|
|
pretrained_model_name_or_path (`str` or `os.PathLike`): |
|
|
This can be either: |
|
|
- a string, the *model id* of a pretrained model |
|
|
- a path to a *directory* containing processor config |
|
|
|
|
|
Returns: |
|
|
[`VibeVoiceStreamingProcessor`]: The processor object instantiated from pretrained model. |
|
|
""" |
|
|
import os |
|
|
import json |
|
|
from transformers.utils import cached_file |
|
|
from .vibevoice_tokenizer_processor import VibeVoiceTokenizerProcessor |
|
|
from vibevoice.modular.modular_vibevoice_text_tokenizer import ( |
|
|
VibeVoiceTextTokenizer, |
|
|
VibeVoiceTextTokenizerFast |
|
|
) |
|
|
|
|
|
|
|
|
config_path = os.path.join(pretrained_model_name_or_path, "preprocessor_config.json") |
|
|
config = None |
|
|
|
|
|
if os.path.exists(config_path): |
|
|
|
|
|
with open(config_path, 'r') as f: |
|
|
config = json.load(f) |
|
|
else: |
|
|
|
|
|
try: |
|
|
config_file = cached_file( |
|
|
pretrained_model_name_or_path, |
|
|
"preprocessor_config.json", |
|
|
**kwargs |
|
|
) |
|
|
with open(config_file, 'r') as f: |
|
|
config = json.load(f) |
|
|
except Exception as e: |
|
|
logger.warning(f"Could not load preprocessor_config.json from {pretrained_model_name_or_path}: {e}") |
|
|
logger.warning("Using default configuration") |
|
|
config = { |
|
|
"speech_tok_compress_ratio": 3200, |
|
|
"db_normalize": True, |
|
|
} |
|
|
|
|
|
|
|
|
speech_tok_compress_ratio = config.get("speech_tok_compress_ratio", 3200) |
|
|
db_normalize = config.get("db_normalize", True) |
|
|
|
|
|
|
|
|
language_model_pretrained_name = config.get("language_model_pretrained_name", None) or kwargs.pop("language_model_pretrained_name", "Qwen/Qwen2.5-1.5B") |
|
|
logger.info(f"Loading tokenizer from {language_model_pretrained_name}") |
|
|
if 'qwen' in language_model_pretrained_name.lower(): |
|
|
tokenizer = VibeVoiceTextTokenizerFast.from_pretrained( |
|
|
language_model_pretrained_name, |
|
|
**kwargs |
|
|
) |
|
|
else: |
|
|
raise ValueError(f"Unsupported tokenizer type for {language_model_pretrained_name}. Supported types: Qwen, Llama, Gemma.") |
|
|
|
|
|
|
|
|
if "audio_processor" in config: |
|
|
|
|
|
audio_config = config["audio_processor"] |
|
|
audio_processor = VibeVoiceTokenizerProcessor( |
|
|
sampling_rate=audio_config.get("sampling_rate", 24000), |
|
|
normalize_audio=audio_config.get("normalize_audio", True), |
|
|
target_dB_FS=audio_config.get("target_dB_FS", -25), |
|
|
eps=audio_config.get("eps", 1e-6), |
|
|
) |
|
|
else: |
|
|
|
|
|
audio_processor = VibeVoiceTokenizerProcessor() |
|
|
|
|
|
|
|
|
return cls( |
|
|
tokenizer=tokenizer, |
|
|
audio_processor=audio_processor, |
|
|
speech_tok_compress_ratio=speech_tok_compress_ratio, |
|
|
db_normalize=db_normalize, |
|
|
) |
|
|
|
|
|
def save_pretrained(self, save_directory: Union[str, os.PathLike], **kwargs): |
|
|
""" |
|
|
Save a processor to a directory, so that it can be re-loaded using the |
|
|
[`~VibeVoiceStreamingProcessor.from_pretrained`] class method. |
|
|
|
|
|
Args: |
|
|
save_directory (`str` or `os.PathLike`): |
|
|
Directory where the processor will be saved. |
|
|
""" |
|
|
import os |
|
|
import json |
|
|
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
|
|
|
|
|
processor_config = { |
|
|
"processor_class": "VibeVoiceStreamingProcessor", |
|
|
"speech_tok_compress_ratio": self.speech_tok_compress_ratio, |
|
|
"db_normalize": self.db_normalize, |
|
|
"audio_processor": { |
|
|
"feature_extractor_type": "VibeVoiceTokenizerProcessor", |
|
|
"sampling_rate": getattr(self.audio_processor, 'sampling_rate', 24000), |
|
|
"normalize_audio": getattr(self.audio_processor, 'normalize_audio', True), |
|
|
"target_dB_FS": getattr(self.audio_processor, 'target_dB_FS', -25), |
|
|
"eps": getattr(self.audio_processor, 'eps', 1e-6), |
|
|
} |
|
|
} |
|
|
|
|
|
config_path = os.path.join(save_directory, "preprocessor_config.json") |
|
|
with open(config_path, 'w') as f: |
|
|
json.dump(processor_config, f, indent=2) |
|
|
|
|
|
logger.info(f"Processor configuration saved in {config_path}") |
|
|
|
|
|
def __call__(self) -> BatchEncoding: |
|
|
""" |
|
|
Note: |
|
|
This method is intentionally not implemented in the streaming processor. |
|
|
Use `process_input_with_cached_prompt` for streaming use cases. |
|
|
""" |
|
|
raise NotImplementedError( |
|
|
"VibeVoiceStreamingProcessor.__call__ is not implemented. " |
|
|
"Use process_input_with_cached_prompt for streaming inputs." |
|
|
) |
|
|
|
|
|
def process_input_with_cached_prompt( |
|
|
self, |
|
|
text: Optional[str] = None, |
|
|
cached_prompt: Optional[Dict[str, Any]] = None, |
|
|
padding: Union[bool, str, PaddingStrategy] = True, |
|
|
truncation: Union[bool, str, TruncationStrategy] = False, |
|
|
max_length: Optional[int] = None, |
|
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
|
return_attention_mask: bool = True, |
|
|
**kwargs, |
|
|
) -> BatchEncoding: |
|
|
""" |
|
|
Main method to process one text script based on cached prompt. The function currently only supports single examples. |
|
|
|
|
|
Args: |
|
|
text (`str`): |
|
|
The input text to process. |
|
|
cached_prompt (`Dict[str, Any]`, *optional*): |
|
|
The cached prompt to use for processing. It contains the kv cache of the voice prompt. |
|
|
padding (`bool`, `str` or `PaddingStrategy`, defaults to `True`): |
|
|
Whether to pad sequences to the same length |
|
|
truncation (`bool`, `str` or `TruncationStrategy`, defaults to `False`): |
|
|
Whether to truncate sequences |
|
|
max_length (`int`, *optional*): |
|
|
Maximum length of the returned sequences |
|
|
return_tensors (`str` or `TensorType`, *optional*): |
|
|
If set, will return tensors of a particular framework |
|
|
return_attention_mask (`bool`, defaults to `True`): |
|
|
Whether to return the attention mask |
|
|
|
|
|
Returns: |
|
|
`BatchEncoding`: A BatchEncoding with the following fields: |
|
|
- **input_ids** -- List of token id sequences or tensor |
|
|
- **attention_mask** -- List of attention masks or tensor |
|
|
- **tts_lm_input_ids** -- List of token id sequences or tensor used for TTS LM |
|
|
- **tts_lm_attention_mask** -- List of attention masks or tensor used for TTS LM |
|
|
- **tts_text_ids** -- List of token id sequences or tensor for TTS text input |
|
|
- **speech_tensors** -- Padded speech inputs (if voice_samples provided) |
|
|
- **speech_masks** -- Speech masks (if voice_samples provided) |
|
|
- **speech_input_mask** -- Boolean masks indicating speech token positions |
|
|
""" |
|
|
|
|
|
texts = [text] |
|
|
cached_prompts = [cached_prompt] |
|
|
is_batched = False |
|
|
|
|
|
|
|
|
all_encodings = [] |
|
|
for text_input, cached_prompt_input in zip(texts, cached_prompts): |
|
|
script_tokens = self.tokenizer.encode(text_input.strip() + "\n", add_special_tokens=False) |
|
|
input_id_length = cached_prompt_input['lm']['last_hidden_state'].size(1) |
|
|
tts_lm_input_id_length = cached_prompt_input['tts_lm']['last_hidden_state'].size(1) |
|
|
|
|
|
|
|
|
input_ids = [self.tokenizer.pad_id] * input_id_length |
|
|
tts_lm_input_ids = [self.tokenizer.pad_id] * tts_lm_input_id_length |
|
|
speech_input_mask = [False] * tts_lm_input_id_length |
|
|
|
|
|
encoding = { |
|
|
"input_ids": input_ids, |
|
|
"tts_lm_input_ids": tts_lm_input_ids, |
|
|
"tts_text_ids": script_tokens, |
|
|
"speech_inputs": None, |
|
|
"speech_input_mask": speech_input_mask, |
|
|
} |
|
|
all_encodings.append(encoding) |
|
|
|
|
|
|
|
|
batch_encoding = self._batch_encode( |
|
|
all_encodings, |
|
|
padding=padding, |
|
|
truncation=truncation, |
|
|
max_length=max_length, |
|
|
return_tensors=return_tensors, |
|
|
return_attention_mask=return_attention_mask, |
|
|
) |
|
|
|
|
|
return batch_encoding |
|
|
|
|
|
def _batch_encode( |
|
|
self, |
|
|
encodings: List[Dict[str, Any]], |
|
|
padding: Union[bool, str, PaddingStrategy] = True, |
|
|
truncation: Union[bool, str, TruncationStrategy] = False, |
|
|
max_length: Optional[int] = None, |
|
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
|
return_attention_mask: bool = True, |
|
|
) -> BatchEncoding: |
|
|
"""Combine multiple encodings into a batch with padding.""" |
|
|
|
|
|
input_ids_list = [enc["input_ids"] for enc in encodings] |
|
|
tts_lm_input_ids_list = [enc["tts_lm_input_ids"] for enc in encodings] |
|
|
tts_text_ids_list = [enc["tts_text_ids"] for enc in encodings] |
|
|
speech_input_masks_list = [enc["speech_input_mask"] for enc in encodings] |
|
|
|
|
|
attention_masks = [[1] * len(ids) for ids in input_ids_list] if return_attention_mask else None |
|
|
tts_lm_attention_masks = [[1] * len(ids) for ids in tts_lm_input_ids_list] if return_attention_mask else None |
|
|
|
|
|
|
|
|
all_speech_inputs = [] |
|
|
has_speech = False |
|
|
for enc in encodings: |
|
|
if enc["speech_inputs"] is not None: |
|
|
all_speech_inputs.extend(enc["speech_inputs"]) |
|
|
has_speech = True |
|
|
|
|
|
|
|
|
batch_encoding = BatchEncoding() |
|
|
|
|
|
|
|
|
if return_tensors is not None: |
|
|
batch_encoding["input_ids"] = torch.tensor(input_ids_list, dtype=torch.long) |
|
|
batch_encoding["tts_lm_input_ids"] = torch.tensor(tts_lm_input_ids_list, dtype=torch.long) |
|
|
batch_encoding["tts_text_ids"] = torch.tensor(tts_text_ids_list, dtype=torch.long) |
|
|
|
|
|
if return_attention_mask and attention_masks is not None: |
|
|
batch_encoding["attention_mask"] = torch.tensor(attention_masks, dtype=torch.long) |
|
|
batch_encoding["tts_lm_attention_mask"] = torch.tensor(tts_lm_attention_masks, dtype=torch.long) |
|
|
|
|
|
batch_encoding["speech_input_mask"] = torch.tensor(speech_input_masks_list, dtype=torch.bool) |
|
|
else: |
|
|
batch_encoding["input_ids"] = input_ids_list |
|
|
batch_encoding["tts_lm_input_ids"] = tts_lm_input_ids_list |
|
|
batch_encoding["tts_text_ids"] = tts_text_ids_list |
|
|
if return_attention_mask and attention_masks is not None: |
|
|
batch_encoding["attention_mask"] = attention_masks |
|
|
batch_encoding["tts_lm_attention_mask"] = tts_lm_attention_masks |
|
|
batch_encoding["speech_input_mask"] = speech_input_masks_list |
|
|
|
|
|
|
|
|
if has_speech: |
|
|
speech_dict = self.prepare_speech_inputs( |
|
|
all_speech_inputs, |
|
|
return_tensors=return_tensors, |
|
|
) |
|
|
batch_encoding["speech_tensors"] = speech_dict["padded_speeches"] |
|
|
batch_encoding["speech_masks"] = speech_dict["speech_masks"] |
|
|
else: |
|
|
batch_encoding["speech_tensors"] = None |
|
|
batch_encoding["speech_masks"] = None |
|
|
|
|
|
return batch_encoding |
|
|
|
|
|
def prepare_speech_inputs( |
|
|
self, |
|
|
speech_inputs: List[np.ndarray], |
|
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
|
device: Optional[Union[str, torch.device]] = None, |
|
|
dtype: Optional[torch.dtype] = None, |
|
|
) -> Dict[str, Any]: |
|
|
""" |
|
|
Prepare speech inputs for model consumption. |
|
|
|
|
|
Args: |
|
|
speech_inputs: List of speech arrays |
|
|
return_tensors: Output tensor type |
|
|
device: Device to place tensors on |
|
|
dtype: Data type for tensors |
|
|
|
|
|
Returns: |
|
|
Dictionary with padded_speeches and speech_masks |
|
|
""" |
|
|
if not speech_inputs: |
|
|
return {"padded_speeches": None, "speech_masks": None} |
|
|
|
|
|
|
|
|
vae_tok_seqlens = [math.ceil(s.shape[0] / self.speech_tok_compress_ratio) for s in speech_inputs] |
|
|
|
|
|
max_speech_length = max(s.shape[0] for s in speech_inputs) |
|
|
|
|
|
|
|
|
if speech_inputs[0].ndim == 1: |
|
|
padded_speeches = np.full((len(speech_inputs), max_speech_length), fill_value=0, dtype=np.float32) |
|
|
else: |
|
|
padded_speeches = np.full((len(speech_inputs), max_speech_length, speech_inputs[0].shape[-1]), fill_value=0, dtype=np.float32) |
|
|
speech_masks = np.zeros((len(speech_inputs), max(vae_tok_seqlens)), dtype=np.bool_) |
|
|
|
|
|
for i, (speech, vae_tok_length) in enumerate(zip(speech_inputs, vae_tok_seqlens)): |
|
|
padded_speeches[i, :len(speech)] = speech |
|
|
speech_masks[i, :vae_tok_length] = True |
|
|
|
|
|
result = { |
|
|
"padded_speeches": padded_speeches, |
|
|
"speech_masks": speech_masks, |
|
|
} |
|
|
|
|
|
|
|
|
if return_tensors == "pt": |
|
|
result["padded_speeches"] = torch.tensor(padded_speeches, device=device, dtype=dtype or torch.float32) |
|
|
result["speech_masks"] = torch.tensor(speech_masks, device=device, dtype=torch.bool) |
|
|
|
|
|
return result |
|
|
|
|
|
def batch_decode(self, *args, **kwargs): |
|
|
""" |
|
|
This method forwards all its arguments to VibeVoiceTextTokenizer's [`~PreTrainedTokenizer.batch_decode`]. |
|
|
Please refer to the docstring of this method for more information. |
|
|
""" |
|
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
|
|
def decode(self, *args, **kwargs): |
|
|
""" |
|
|
This method forwards all its arguments to VibeVoiceTextTokenizer's [`~PreTrainedTokenizer.decode`]. |
|
|
Please refer to the docstring of this method for more information. |
|
|
""" |
|
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
|
|
@property |
|
|
def model_input_names(self): |
|
|
""" |
|
|
Return the list of inputs accepted by the model. |
|
|
""" |
|
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
|
audio_processor_input_names = self.audio_processor.model_input_names |
|
|
return list(dict.fromkeys(tokenizer_input_names + audio_processor_input_names + ["speech_inputs", "speech_input_mask"])) |
|
|
|
|
|
def save_audio(self, |
|
|
audio: Union[torch.Tensor, np.ndarray, List[Union[torch.Tensor, np.ndarray]]], |
|
|
output_path: str = "output.wav", |
|
|
sampling_rate: Optional[int] = None, |
|
|
normalize: bool = False, |
|
|
batch_prefix: str = "audio_", |
|
|
) -> str: |
|
|
""" |
|
|
Save audio data to a file. |
|
|
Args: |
|
|
audio (Union[torch.Tensor, np.ndarray, List[Union[torch.Tensor, np.ndarray]]]): |
|
|
The audio data to save. Can be a single tensor/array or a list of them. |
|
|
output_path (str, optional): Path to save the audio file. Defaults to "output.wav". |
|
|
sampling_rate (int, optional): Sampling rate for the audio. If None, uses the processor's default. |
|
|
normalize (bool, optional): Whether to normalize the audio before saving. Defaults to False. |
|
|
batch_prefix (str, optional): Prefix for batch audio files. Defaults to "audio_". |
|
|
Returns: |
|
|
str: The path to the saved audio file. |
|
|
""" |
|
|
return self.audio_processor.save_audio(audio, output_path=output_path, sampling_rate=sampling_rate, normalize=normalize, batch_prefix=batch_prefix) |
|
|
|
|
|
__all__ = [ |
|
|
"VibeVoiceStreamingProcessor", |
|
|
] |