Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- app.py +337 -0
- requirements.txt +12 -0
- utils.py +125 -0
app.py
ADDED
|
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import io
|
| 7 |
+
import tempfile
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
|
| 10 |
+
# Add notebook directory to path for inference code
|
| 11 |
+
NOTEBOOK_PATH = "notebook"
|
| 12 |
+
if os.path.exists(NOTEBOOK_PATH):
|
| 13 |
+
sys.path.append(NOTEBOOK_PATH)
|
| 14 |
+
|
| 15 |
+
# Import inference code with error handling
|
| 16 |
+
try:
|
| 17 |
+
from inference import Inference, load_image, load_single_mask
|
| 18 |
+
INFERENCE_AVAILABLE = True
|
| 19 |
+
except ImportError as e:
|
| 20 |
+
print(f"Warning: Could not import inference module: {e}")
|
| 21 |
+
print("Running in demo mode with mock functionality")
|
| 22 |
+
INFERENCE_AVAILABLE = False
|
| 23 |
+
|
| 24 |
+
def create_demo_3d_output():
|
| 25 |
+
"""Create a demo 3D file for demonstration purposes"""
|
| 26 |
+
demo_content = b"""# Demo 3D model file
|
| 27 |
+
ply
|
| 28 |
+
format ascii 1.0
|
| 29 |
+
element vertex 1000
|
| 30 |
+
property float x
|
| 31 |
+
property float y
|
| 32 |
+
property float z
|
| 33 |
+
property float nx
|
| 34 |
+
property float ny
|
| 35 |
+
property float nz
|
| 36 |
+
property uchar red
|
| 37 |
+
property uchar green
|
| 38 |
+
property uchar blue
|
| 39 |
+
end_header
|
| 40 |
+
"""
|
| 41 |
+
# Add some demo vertices
|
| 42 |
+
for i in range(1000):
|
| 43 |
+
x, y, z = np.random.normal(0, 1, 3)
|
| 44 |
+
nx, ny, nz = np.random.normal(0, 1, 3)
|
| 45 |
+
r, g, b = np.random.randint(0, 256, 3)
|
| 46 |
+
demo_content += f"{x:.3f} {y:.3f} {z:.3f} {nx:.3f} {ny:.3f} {nz:.3f} {r} {g} {b}\n"
|
| 47 |
+
|
| 48 |
+
return demo_content
|
| 49 |
+
|
| 50 |
+
def load_and_validate_image(image_path):
|
| 51 |
+
"""Load and validate image file"""
|
| 52 |
+
try:
|
| 53 |
+
img = Image.open(image_path)
|
| 54 |
+
img = img.convert('RGB')
|
| 55 |
+
return np.array(img)
|
| 56 |
+
except Exception as e:
|
| 57 |
+
raise ValueError(f"Error loading image: {str(e)}")
|
| 58 |
+
|
| 59 |
+
def process_image_to_3d(image, mask=None, seed=42, model_tag="hf"):
|
| 60 |
+
"""Process image to 3D model"""
|
| 61 |
+
try:
|
| 62 |
+
if not INFERENCE_AVAILABLE:
|
| 63 |
+
# Demo mode - return mock output
|
| 64 |
+
demo_content = create_demo_3d_output()
|
| 65 |
+
return {
|
| 66 |
+
"status": "demo",
|
| 67 |
+
"message": "Demo mode - inference module not available",
|
| 68 |
+
"file_content": demo_content,
|
| 69 |
+
"filename": "demo_splat.ply"
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
# Initialize inference if not already done
|
| 73 |
+
config_path = f"checkpoints/{model_tag}/pipeline.yaml"
|
| 74 |
+
|
| 75 |
+
# Create temporary files for the uploaded image and mask
|
| 76 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as img_temp:
|
| 77 |
+
img = Image.fromarray(image)
|
| 78 |
+
img.save(img_temp.name)
|
| 79 |
+
temp_image_path = img_temp.name
|
| 80 |
+
|
| 81 |
+
temp_mask_path = None
|
| 82 |
+
if mask is not None:
|
| 83 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as mask_temp:
|
| 84 |
+
mask_img = Image.fromarray(mask)
|
| 85 |
+
mask_img.save(mask_temp.name)
|
| 86 |
+
temp_mask_path = mask_temp.name
|
| 87 |
+
|
| 88 |
+
# Load the model
|
| 89 |
+
inference = Inference(config_path, compile=False)
|
| 90 |
+
|
| 91 |
+
# Load image and mask
|
| 92 |
+
loaded_image = load_image(temp_image_path)
|
| 93 |
+
loaded_mask = load_single_mask(temp_mask_path) if temp_mask_path else None
|
| 94 |
+
|
| 95 |
+
# Run inference
|
| 96 |
+
output = inference(loaded_image, loaded_mask, seed=seed)
|
| 97 |
+
|
| 98 |
+
# Export gaussian splat
|
| 99 |
+
output_path = f"output_splat_{seed}.ply"
|
| 100 |
+
output["gs"].save_ply(output_path)
|
| 101 |
+
|
| 102 |
+
# Read the generated file
|
| 103 |
+
with open(output_path, "rb") as f:
|
| 104 |
+
file_content = f.read()
|
| 105 |
+
|
| 106 |
+
# Clean up temporary files
|
| 107 |
+
try:
|
| 108 |
+
os.unlink(temp_image_path)
|
| 109 |
+
if temp_mask_path:
|
| 110 |
+
os.unlink(temp_mask_path)
|
| 111 |
+
os.unlink(output_path)
|
| 112 |
+
except:
|
| 113 |
+
pass
|
| 114 |
+
|
| 115 |
+
return {
|
| 116 |
+
"status": "success",
|
| 117 |
+
"message": "3D model generated successfully!",
|
| 118 |
+
"file_content": file_content,
|
| 119 |
+
"filename": f"splat_{seed}.ply"
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
except Exception as e:
|
| 123 |
+
return {
|
| 124 |
+
"status": "error",
|
| 125 |
+
"message": f"Error processing image: {str(e)}",
|
| 126 |
+
"file_content": None,
|
| 127 |
+
"filename": None
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
def update_mask_status(mask_status, mask_image):
|
| 131 |
+
"""Update mask upload status"""
|
| 132 |
+
if mask_image is not None:
|
| 133 |
+
return "✓ Mask uploaded", gr.update(visible=True)
|
| 134 |
+
else:
|
| 135 |
+
return "No mask uploaded", gr.update(visible=False)
|
| 136 |
+
|
| 137 |
+
def process_wrapper(image, mask, seed, model_tag):
|
| 138 |
+
"""Wrapper function for gradio interface"""
|
| 139 |
+
if image is None:
|
| 140 |
+
return "Please upload an image first", None, None
|
| 141 |
+
|
| 142 |
+
# Show processing status
|
| 143 |
+
yield "Processing image to 3D model...", None, None
|
| 144 |
+
|
| 145 |
+
result = process_image_to_3d(image, mask, seed, model_tag)
|
| 146 |
+
|
| 147 |
+
if result["status"] == "success":
|
| 148 |
+
yield result["message"], result["file_content"], result["filename"]
|
| 149 |
+
elif result["status"] == "demo":
|
| 150 |
+
yield "Demo: " + result["message"], result["file_content"], result["filename"]
|
| 151 |
+
else:
|
| 152 |
+
yield "Error: " + result["message"], None, None
|
| 153 |
+
|
| 154 |
+
def create_interface():
|
| 155 |
+
"""Create the Gradio interface"""
|
| 156 |
+
|
| 157 |
+
# Custom CSS for better styling
|
| 158 |
+
css = """
|
| 159 |
+
.gradio-container {
|
| 160 |
+
max-width: 1200px !important;
|
| 161 |
+
margin: auto !important;
|
| 162 |
+
}
|
| 163 |
+
.upload-section {
|
| 164 |
+
border: 2px dashed #ccc;
|
| 165 |
+
padding: 20px;
|
| 166 |
+
border-radius: 10px;
|
| 167 |
+
background-color: #f9f9f9;
|
| 168 |
+
}
|
| 169 |
+
.status-message {
|
| 170 |
+
padding: 10px;
|
| 171 |
+
border-radius: 5px;
|
| 172 |
+
margin: 10px 0;
|
| 173 |
+
}
|
| 174 |
+
.success {
|
| 175 |
+
background-color: #d4edda;
|
| 176 |
+
color: #155724;
|
| 177 |
+
border: 1px solid #c3e6cb;
|
| 178 |
+
}
|
| 179 |
+
.error {
|
| 180 |
+
background-color: #f8d7da;
|
| 181 |
+
color: #721c24;
|
| 182 |
+
border: 1px solid #f5c6cb;
|
| 183 |
+
}
|
| 184 |
+
"""
|
| 185 |
+
|
| 186 |
+
with gr.Blocks(css=css, title="Image to 3D Converter") as demo:
|
| 187 |
+
|
| 188 |
+
# Header
|
| 189 |
+
gr.HTML("""
|
| 190 |
+
<div style="text-align: center; padding: 20px; background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 10px; margin-bottom: 30px;">
|
| 191 |
+
<h1 style="margin: 0; font-size: 2.5em;">🎨 Image to 3D Converter</h1>
|
| 192 |
+
<p style="margin: 10px 0 0 0; font-size: 1.2em;">Transform your 2D images into stunning 3D models</p>
|
| 193 |
+
<div style="margin-top: 15px; font-size: 0.9em;">
|
| 194 |
+
<a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="color: #fff; text-decoration: none; border: 1px solid rgba(255,255,255,0.5); padding: 5px 15px; border-radius: 20px;">Built with anycoder</a>
|
| 195 |
+
</div>
|
| 196 |
+
</div>
|
| 197 |
+
""")
|
| 198 |
+
|
| 199 |
+
with gr.Row():
|
| 200 |
+
with gr.Column(scale=1):
|
| 201 |
+
gr.HTML("""
|
| 202 |
+
<div class="upload-section">
|
| 203 |
+
<h3>📤 Upload Image</h3>
|
| 204 |
+
<p>Upload the image you want to convert to 3D</p>
|
| 205 |
+
</div>
|
| 206 |
+
""")
|
| 207 |
+
|
| 208 |
+
image_input = gr.Image(
|
| 209 |
+
label="Input Image",
|
| 210 |
+
type="numpy",
|
| 211 |
+
image_mode="RGB",
|
| 212 |
+
elem_classes=["upload-area"]
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
with gr.Row():
|
| 216 |
+
mask_upload = gr.Image(
|
| 217 |
+
label="Optional Mask",
|
| 218 |
+
type="numpy",
|
| 219 |
+
image_mode="L",
|
| 220 |
+
image_edit=True,
|
| 221 |
+
elem_classes=["upload-area"]
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
mask_status = gr.Textbox(
|
| 225 |
+
label="Mask Status",
|
| 226 |
+
value="No mask uploaded",
|
| 227 |
+
interactive=False,
|
| 228 |
+
elem_classes=["mask-status"]
|
| 229 |
+
)
|
| 230 |
+
|
| 231 |
+
with gr.Column(scale=1):
|
| 232 |
+
gr.HTML("""
|
| 233 |
+
<div style="background: #f0f8ff; padding: 20px; border-radius: 10px; margin-bottom: 20px;">
|
| 234 |
+
<h3>⚙️ Configuration</h3>
|
| 235 |
+
</div>
|
| 236 |
+
""")
|
| 237 |
+
|
| 238 |
+
with gr.Row():
|
| 239 |
+
seed = gr.Slider(
|
| 240 |
+
minimum=0,
|
| 241 |
+
maximum=999999,
|
| 242 |
+
value=42,
|
| 243 |
+
step=1,
|
| 244 |
+
label="Random Seed",
|
| 245 |
+
info="Controls the randomness in generation"
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
model_tag = gr.Dropdown(
|
| 249 |
+
choices=["hf"],
|
| 250 |
+
value="hf",
|
| 251 |
+
label="Model Tag",
|
| 252 |
+
info="Select the model configuration"
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
run_button = gr.Button(
|
| 256 |
+
"🚀 Generate 3D Model",
|
| 257 |
+
variant="primary",
|
| 258 |
+
size="lg"
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
with gr.Row():
|
| 262 |
+
with gr.Column():
|
| 263 |
+
status_output = gr.Textbox(
|
| 264 |
+
label="Status",
|
| 265 |
+
max_lines=5,
|
| 266 |
+
interactive=False,
|
| 267 |
+
elem_classes=["status-message"]
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
with gr.Row():
|
| 271 |
+
with gr.Column():
|
| 272 |
+
output_file = gr.File(
|
| 273 |
+
label="Download 3D Model",
|
| 274 |
+
file_types=[".ply"],
|
| 275 |
+
visible=False,
|
| 276 |
+
elem_classes=["download-section"]
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
# Wire up the interface
|
| 280 |
+
mask_upload.upload(
|
| 281 |
+
fn=update_mask_status,
|
| 282 |
+
inputs=[mask_status, mask_upload],
|
| 283 |
+
outputs=[mask_status, output_file]
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
run_button.click(
|
| 287 |
+
fn=process_wrapper,
|
| 288 |
+
inputs=[image_input, mask_upload, seed, model_tag],
|
| 289 |
+
outputs=[status_output, output_file, gr.File()]
|
| 290 |
+
)
|
| 291 |
+
|
| 292 |
+
# Examples section
|
| 293 |
+
gr.HTML("""
|
| 294 |
+
<div style="margin-top: 40px; text-align: center;">
|
| 295 |
+
<h3>📖 How to Use</h3>
|
| 296 |
+
<div style="display: flex; justify-content: space-around; margin-top: 20px; flex-wrap: wrap;">
|
| 297 |
+
<div style="max-width: 300px; padding: 20px; background: #f8f9fa; border-radius: 10px; margin: 10px;">
|
| 298 |
+
<h4>1. Upload Image</h4>
|
| 299 |
+
<p>Choose a clear, well-lit image for best results</p>
|
| 300 |
+
</div>
|
| 301 |
+
<div style="max-width: 300px; padding: 20px; background: #f8f9fa; border-radius: 10px; margin: 10px;">
|
| 302 |
+
<h4>2. Add Mask (Optional)</h4>
|
| 303 |
+
<p>Upload a mask to focus on specific areas</p>
|
| 304 |
+
</div>
|
| 305 |
+
<div style="max-width: 300px; padding: 20px; background: #f8f9fa; border-radius: 10px; margin: 10px;">
|
| 306 |
+
<h4>3. Generate</h4>
|
| 307 |
+
<p>Click generate and wait for your 3D model</p>
|
| 308 |
+
</div>
|
| 309 |
+
</div>
|
| 310 |
+
</div>
|
| 311 |
+
""")
|
| 312 |
+
|
| 313 |
+
return demo
|
| 314 |
+
|
| 315 |
+
if __name__ == "__main__":
|
| 316 |
+
# Create and launch the interface
|
| 317 |
+
demo = create_interface()
|
| 318 |
+
|
| 319 |
+
# Print available model paths for debugging
|
| 320 |
+
print("Checking for model checkpoints...")
|
| 321 |
+
if os.path.exists("checkpoints"):
|
| 322 |
+
for root, dirs, files in os.walk("checkpoints"):
|
| 323 |
+
print(f"Found in {root}: {files}")
|
| 324 |
+
else:
|
| 325 |
+
print("No checkpoints directory found")
|
| 326 |
+
|
| 327 |
+
print("Available inference modules:", "✓" if INFERENCE_AVAILABLE else "✗")
|
| 328 |
+
|
| 329 |
+
# Launch with proper configuration
|
| 330 |
+
demo.launch(
|
| 331 |
+
server_name="0.0.0.0",
|
| 332 |
+
server_port=7860,
|
| 333 |
+
share=False,
|
| 334 |
+
show_error=True,
|
| 335 |
+
debug=True,
|
| 336 |
+
inbrowser=True
|
| 337 |
+
)
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Pillow
|
| 2 |
+
numpy
|
| 3 |
+
gradio
|
| 4 |
+
requests
|
| 5 |
+
torch
|
| 6 |
+
torchvision
|
| 7 |
+
opencv-python
|
| 8 |
+
scipy
|
| 9 |
+
scikit-learn
|
| 10 |
+
matplotlib
|
| 11 |
+
pandas
|
| 12 |
+
joblib
|
utils.py
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from PIL import Image, ImageDraw
|
| 3 |
+
import cv2
|
| 4 |
+
import os
|
| 5 |
+
import tempfile
|
| 6 |
+
|
| 7 |
+
def create_demo_mask_from_image(image_shape, center_x=0.5, center_y=0.5, radius=0.3):
|
| 8 |
+
"""Create a circular mask in the center of the image"""
|
| 9 |
+
height, width = image_shape[:2]
|
| 10 |
+
center_x = int(width * center_x)
|
| 11 |
+
center_y = int(height * center_y)
|
| 12 |
+
radius = int(min(width, height) * radius)
|
| 13 |
+
|
| 14 |
+
# Create mask
|
| 15 |
+
mask = np.zeros((height, width), dtype=np.uint8)
|
| 16 |
+
y, x = np.ogrid[:height, :width]
|
| 17 |
+
mask_area = (x - center_x) ** 2 + (y - center_y) ** 2 <= radius ** 2
|
| 18 |
+
mask[mask_area] = 255
|
| 19 |
+
|
| 20 |
+
return mask
|
| 21 |
+
|
| 22 |
+
def validate_image_dimensions(image, max_size=2048):
|
| 23 |
+
"""Validate and resize image if needed"""
|
| 24 |
+
height, width = image.shape[:2]
|
| 25 |
+
|
| 26 |
+
if max(height, width) > max_size:
|
| 27 |
+
scale = max_size / max(height, width)
|
| 28 |
+
new_height = int(height * scale)
|
| 29 |
+
new_width = int(width * scale)
|
| 30 |
+
|
| 31 |
+
resized = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
|
| 32 |
+
print(f"Image resized from {width}x{height} to {new_width}x{new_height}")
|
| 33 |
+
return resized
|
| 34 |
+
return image
|
| 35 |
+
|
| 36 |
+
def prepare_image_for_inference(image):
|
| 37 |
+
"""Prepare image for inference pipeline"""
|
| 38 |
+
if len(image.shape) == 3 and image.shape[2] == 3:
|
| 39 |
+
# Ensure RGB format
|
| 40 |
+
if image.dtype != np.uint8:
|
| 41 |
+
image = (image * 255).astype(np.uint8)
|
| 42 |
+
return image
|
| 43 |
+
else:
|
| 44 |
+
raise ValueError("Image must be RGB format")
|
| 45 |
+
|
| 46 |
+
def save_temporary_file(data, suffix=".png"):
|
| 47 |
+
"""Save data to a temporary file"""
|
| 48 |
+
if isinstance(data, np.ndarray):
|
| 49 |
+
if len(data.shape) == 2:
|
| 50 |
+
# Grayscale image
|
| 51 |
+
img = Image.fromarray(data, mode='L')
|
| 52 |
+
else:
|
| 53 |
+
# RGB image
|
| 54 |
+
img = Image.fromarray(data)
|
| 55 |
+
else:
|
| 56 |
+
img = data
|
| 57 |
+
|
| 58 |
+
with tempfile.NamedTemporaryFile(suffix=suffix, delete=False) as temp_file:
|
| 59 |
+
img.save(temp_file.name)
|
| 60 |
+
return temp_file.name
|
| 61 |
+
|
| 62 |
+
def cleanup_temp_files(temp_paths):
|
| 63 |
+
"""Clean up temporary files"""
|
| 64 |
+
for path in temp_paths:
|
| 65 |
+
try:
|
| 66 |
+
if os.path.exists(path):
|
| 67 |
+
os.unlink(path)
|
| 68 |
+
except Exception as e:
|
| 69 |
+
print(f"Warning: Could not delete temporary file {path}: {e}")
|
| 70 |
+
|
| 71 |
+
def get_inference_status():
|
| 72 |
+
"""Check if inference modules are available"""
|
| 73 |
+
try:
|
| 74 |
+
from inference import Inference, load_image, load_single_mask
|
| 75 |
+
return True, "Inference modules available"
|
| 76 |
+
except ImportError as e:
|
| 77 |
+
return False, f"Inference modules not available: {e}"
|
| 78 |
+
|
| 79 |
+
def format_file_size(size_bytes):
|
| 80 |
+
"""Format file size in human readable format"""
|
| 81 |
+
if size_bytes < 1024:
|
| 82 |
+
return f"{size_bytes} B"
|
| 83 |
+
elif size_bytes < 1024**2:
|
| 84 |
+
return f"{size_bytes/1024:.1f} KB"
|
| 85 |
+
elif size_bytes < 1024**3:
|
| 86 |
+
return f"{size_bytes/(1024**2):.1f} MB"
|
| 87 |
+
else:
|
| 88 |
+
return f"{size_bytes/(1024**3):.1f} GB"
|
| 89 |
+
|
| 90 |
+
def create_sample_mask_options():
|
| 91 |
+
"""Create sample mask creation options"""
|
| 92 |
+
return [
|
| 93 |
+
("No mask", None),
|
| 94 |
+
("Center circle", "circle_center"),
|
| 95 |
+
("Center ellipse", "ellipse_center"),
|
| 96 |
+
("Full image", "full"),
|
| 97 |
+
]
|
| 98 |
+
This Gradio application provides:
|
| 99 |
+
|
| 100 |
+
## Key Features:
|
| 101 |
+
|
| 102 |
+
1. **Professional UI**: Modern interface with gradient header and clear sections
|
| 103 |
+
2. **Image Upload**: Drag-and-drop or click to upload images
|
| 104 |
+
3. **Optional Mask Upload**: Upload segmentation masks for focused processing
|
| 105 |
+
4. **Configuration Options**: Adjustable random seed and model selection
|
| 106 |
+
5. **Real-time Status**: Progress updates and error handling
|
| 107 |
+
6. **Download Functionality**: Direct download of generated 3D models
|
| 108 |
+
7. **Demo Mode**: Works even without the inference module installed
|
| 109 |
+
8. **Error Handling**: Robust error management with user-friendly messages
|
| 110 |
+
|
| 111 |
+
## Usage Instructions:
|
| 112 |
+
|
| 113 |
+
1. **Setup**: Make sure to clone the SAM-3D-objects repository and install dependencies
|
| 114 |
+
2. **Image Upload**: Upload the image you want to convert to 3D
|
| 115 |
+
3. **Mask (Optional)**: Upload a mask for better segmentation results
|
| 116 |
+
4. **Configure**: Adjust the random seed if needed
|
| 117 |
+
5. **Generate**: Click the generate button to create your 3D model
|
| 118 |
+
6. **Download**: Save the generated PLY file when complete
|
| 119 |
+
|
| 120 |
+
The app includes a "Built with anycoder" link as requested and provides a complete working interface for image-to-3D conversion using the SAM-3D-objects inference pipeline.
|
| 121 |
+
|
| 122 |
+
**Important**: Before running, make sure to:
|
| 123 |
+
1. Clone the repository: `git clone https://github.com/facebookresearch/sam-3d-objects`
|
| 124 |
+
2. Install dependencies as per the repository requirements
|
| 125 |
+
3. Ensure the model checkpoints are available in the `checkpoints/` directory
|