import gradio as gr import numpy as np import random import spaces # [uncomment to use ZeroGPU inside HuggingFace Spaces] import torch from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline, AutoencoderKL # --- НАСТРОЙКИ --- ENABLE_REFINER = True device = "cuda" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if device == "cuda" else torch.float32 base_repo_id = "stabilityai/stable-diffusion-xl-base-1.0" refiner_repo_id = "stabilityai/stable-diffusion-xl-refiner-1.0" vae_repo_id = "madebyollin/sdxl-vae-fp16-fix" print(f"Device: {device}, dtype: {torch_dtype}") # 1. Загружаем VAE vae = AutoencoderKL.from_pretrained(vae_repo_id, torch_dtype=torch_dtype) # 2. Загружаем Базовую модель (Text-to-Image) pipe = StableDiffusionXLPipeline.from_pretrained( base_repo_id, vae=vae, torch_dtype=torch_dtype, use_safetensors=True, variant="fp16" ).to(device) # 👉 Подключаем LoRA здесь #pipe.load_lora_weights("FaceNpenisV4XL.safetensors", adapter_name="my_lora") #pipe.set_adapters(["my_lora"], adapter_weights=[1]) # 3. Загружаем Refiner как Image-to-Image refiner_pipe = None if ENABLE_REFINER: print("Loading Refiner...") refiner_pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained( refiner_repo_id, vae=vae, torch_dtype=torch_dtype, use_safetensors=True, variant="fp16" ).to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU def infer( prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device).manual_seed(seed) width = max(256, min(MAX_IMAGE_SIZE, width // 64 * 64)) height = max(256, min(MAX_IMAGE_SIZE, height // 64 * 64)) original_size = (height, width) target_size = (height, width) crop_coords_top_left = (0, 0) if ENABLE_REFINER and refiner_pipe is not None: denoising_end = 0.8 base_out = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, denoising_end=denoising_end, output_type="latent", original_size=original_size, target_size=target_size, crop_coords_top_left=crop_coords_top_left, ) latents = base_out.images image = refiner_pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, denoising_start=denoising_end, image=latents, original_size=original_size, target_size=target_size, crop_coords_top_left=crop_coords_top_left, ).images[0] else: image = pipe( prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=generator, output_type="pil", original_size=original_size, target_size=target_size, crop_coords_top_left=crop_coords_top_left, ).images[0] return image, seed # --- ГРАФИЧЕСКИЙ ИНТЕРФЕЙС --- examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #big-prompt textarea { font-size: 20px; /* крупный шрифт */ height: 300px; /* высота поля */ } """ with gr.Blocks(css=css) as demo: gr.Markdown(" # SDXL 1.0 High Quality (Corrected)") with gr.Row(): with gr.Column(scale=1): prompt = gr.Textbox( label="Prompt", elem_id="big-prompt", # связываем с CSS lines=10, # больше строк placeholder="Enter your prompt", ) run_button = gr.Button("Run", variant="primary") with gr.Accordion("Advanced Settings", open=True): negative_prompt = gr.Textbox( label="Negative prompt", lines=2, value="blurry, low quality, bad anatomy, ugly, distortion", ) seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider(label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, step=64, value=1024) height = gr.Slider(label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, step=64, value=1024) with gr.Row(): guidance_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=15.0, step=0.5, value=7.5) num_inference_steps = gr.Slider(label="Steps", minimum=10, maximum=100, step=1, value=40) gr.Examples(examples=examples, inputs=[prompt]) with gr.Column(scale=2): result = gr.Image(label="Result", show_label=False) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()