Spaces:
Running
Running
| # main.py | |
| import os | |
| import tempfile | |
| import streamlit as st | |
| from question import chat_with_doc | |
| from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings | |
| from langchain.vectorstores import SupabaseVectorStore | |
| from supabase import Client, create_client | |
| from stats import add_usage | |
| from langchain.llms import HuggingFaceEndpoint | |
| from langchain.chains import ConversationalRetrievalChain | |
| from langchain.memory import ConversationBufferMemory | |
| supabase_url = st.secrets.SUPABASE_URL | |
| supabase_key = st.secrets.SUPABASE_KEY | |
| openai_api_key = st.secrets.openai_api_key | |
| anthropic_api_key = st.secrets.anthropic_api_key | |
| hf_api_key = st.secrets.hf_api_key | |
| supabase: Client = create_client(supabase_url, supabase_key) | |
| self_hosted = st.secrets.self_hosted | |
| username = st.secrets.username | |
| # embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) | |
| embeddings = HuggingFaceInferenceAPIEmbeddings( | |
| api_key=hf_api_key, | |
| model_name="BAAI/bge-large-en-v1.5" | |
| ) | |
| vector_store = SupabaseVectorStore(supabase, embeddings, query_name='match_documents', table_name="documents") | |
| models = ["meta-llama/Llama-2-70b-chat-hf", "mistralai/Mixtral-8x7B-Instruct-v0.1"] | |
| if openai_api_key: | |
| models += ["gpt-3.5-turbo", "gpt-4"] | |
| if anthropic_api_key: | |
| models += ["claude-v1", "claude-v1.3", | |
| "claude-instant-v1-100k", "claude-instant-v1.1-100k"] | |
| if 'question' in st.query_params: | |
| query = st.query_params['question'] | |
| model = "meta-llama/Llama-2-70b-chat-hf" | |
| temp = 0.1 | |
| max_tokens = 500 | |
| add_usage(supabase, "api", "prompt" + query, {"model": model, "temperature": temp}) | |
| # print(st.session_state['max_tokens']) | |
| endpoint_url = ("https://api-inference.huggingface.co/models/"+ model) | |
| model_kwargs = {"temperature" : temp, | |
| "max_new_tokens" : max_tokens, | |
| "return_full_text" : False} | |
| hf = HuggingFaceEndpoint( | |
| endpoint_url=endpoint_url, | |
| task="text-generation", | |
| huggingfacehub_api_token=hf_api_key, | |
| model_kwargs=model_kwargs | |
| ) | |
| memory = ConversationBufferMemory(memory_key="chat_history", input_key='question', output_key='answer', return_messages=True) | |
| qa = ConversationalRetrievalChain.from_llm(hf, retriever=vector_store.as_retriever(search_kwargs={"score_threshold": 0.8, "k": 4,"filter": {"user": username}}), memory=memory, return_source_documents=True) | |
| model_response = qa({"question": query}) | |
| # print( model_response["answer"]) | |
| sources = model_response["source_documents"] | |
| # print(sources) | |
| if len(sources) > 0: | |
| json = {"response": model_response["answer"]} | |
| st.code(json, language="json") | |
| else: | |
| json = {"response": "I am sorry, I do not have enough information to provide an answer. If there is a public source of data that you would like to add, please email [email protected]."} | |
| st.code(json, language="json") | |
| memory.clear() | |
| else: | |
| # Set the theme | |
| st.set_page_config( | |
| page_title="Securade.ai - Safety Copilot", | |
| page_icon="https://securade.ai/favicon.ico", | |
| layout="centered", | |
| initial_sidebar_state="collapsed", | |
| menu_items={ | |
| "About": "# Securade.ai Safety Copilot v0.1\n [https://securade.ai](https://securade.ai)", | |
| "Get Help" : "https://securade.ai", | |
| "Report a Bug": "mailto:[email protected]" | |
| } | |
| ) | |
| st.title("👷♂️ Safety Copilot 🦺") | |
| st.markdown("Chat with your personal safety assistant about any health & safety related queries.") | |
| st.markdown("Up-to-date with latest OSH regulations for Singapore, Indonesia, Malaysia & other parts of Asia.") | |
| st.markdown("---\n\n") | |
| # Initialize session state variables | |
| if 'model' not in st.session_state: | |
| st.session_state['model'] = "meta-llama/Llama-2-70b-chat-hf" | |
| if 'temperature' not in st.session_state: | |
| st.session_state['temperature'] = 0.1 | |
| if 'chunk_size' not in st.session_state: | |
| st.session_state['chunk_size'] = 500 | |
| if 'chunk_overlap' not in st.session_state: | |
| st.session_state['chunk_overlap'] = 0 | |
| if 'max_tokens' not in st.session_state: | |
| st.session_state['max_tokens'] = 500 | |
| if 'username' not in st.session_state: | |
| st.session_state['username'] = username | |
| chat_with_doc(st.session_state['model'], vector_store, stats_db=supabase) | |
| st.markdown("---\n\n") |