danielrosehill Claude commited on
Commit
1080b26
·
1 Parent(s): fca2cc1

Add comprehensive Gradio Space for ASR/STT benchmark results

Browse files

- Created interactive Gradio app with 5 tabs:
- Overview with test sample and limitations
- Interactive visualizations for WER and speed metrics
- Q&A section with all research findings
- Hardware and setup details
- About section with project motivation

- Added all benchmark charts and results
- Included reference transcription text
- Set up Git LFS for audio files (*.wav, *.mp3, *.flac)
- Created interactive Plotly visualizations for WER analysis
- Comprehensive documentation of findings and methodology

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <[email protected]>

.gitattributes CHANGED
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.wav filter=lfs diff=lfs merge=lfs -text
37
+ *.mp3 filter=lfs diff=lfs merge=lfs -text
38
+ *.flac filter=lfs diff=lfs merge=lfs -text
39
+ *.png filter=lfs diff=lfs merge=lfs -text
40
+ *.jpg filter=lfs diff=lfs merge=lfs -text
41
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Python
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+ *.so
6
+ .Python
7
+
8
+ # Virtual environments
9
+ .venv/
10
+ venv/
11
+ ENV/
12
+ env/
13
+
14
+ # IDEs
15
+ .vscode/
16
+ .idea/
17
+ *.swp
18
+ *.swo
19
+
20
+ # OS
21
+ .DS_Store
22
+ Thumbs.db
23
+
24
+ # Gradio
25
+ flagged/
app.py ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import plotly.graph_objects as go
4
+ import plotly.express as px
5
+ from pathlib import Path
6
+
7
+ # Read reference text
8
+ reference_text_path = Path("text/reference.txt")
9
+ if reference_text_path.exists():
10
+ with open(reference_text_path, "r") as f:
11
+ reference_text = f.read()
12
+ else:
13
+ reference_text = "Reference text not available"
14
+
15
+ # Check if audio file exists
16
+ audio_path = Path("audio/001.wav")
17
+ audio_exists = audio_path.exists()
18
+
19
+ # Prepare WER data for visualizations
20
+ wer_data = {
21
+ "Model": ["tiny", "base", "small", "medium", "large-v3-turbo"],
22
+ "WER (%)": [15.05, 9.95, 11.17, 6.07, 7.04],
23
+ "Speed (s)": [2.73, 5.01, 5.14, 19.42, 33.08],
24
+ "Model Size": ["39M", "74M", "244M", "769M", "809M"]
25
+ }
26
+ df_wer = pd.DataFrame(wer_data)
27
+
28
+ # Engine comparison data
29
+ engine_data = {
30
+ "Engine": ["faster-whisper", "openai-whisper", "distil-whisper"],
31
+ "WER (%)": [9.95, 9.95, 21.6],
32
+ "Speed (s)": [4.87, 6.51, 38.49]
33
+ }
34
+ df_engine = pd.DataFrame(engine_data)
35
+
36
+ # Create interactive WER by model visualization
37
+ fig_wer = go.Figure()
38
+ fig_wer.add_trace(go.Bar(
39
+ x=df_wer["Model"],
40
+ y=df_wer["WER (%)"],
41
+ text=df_wer["WER (%)"].round(2),
42
+ textposition='auto',
43
+ marker_color=['#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7'],
44
+ hovertemplate='<b>%{x}</b><br>WER: %{y:.2f}%<br>Size: %{customdata}<extra></extra>',
45
+ customdata=df_wer["Model Size"]
46
+ ))
47
+ fig_wer.update_layout(
48
+ title="Word Error Rate by Model Size",
49
+ xaxis_title="Model",
50
+ yaxis_title="WER (%)",
51
+ template="plotly_white",
52
+ height=400
53
+ )
54
+
55
+ # Create speed vs accuracy scatter plot
56
+ fig_scatter = go.Figure()
57
+ fig_scatter.add_trace(go.Scatter(
58
+ x=df_wer["Speed (s)"],
59
+ y=df_wer["WER (%)"],
60
+ mode='markers+text',
61
+ marker=dict(size=15, color=['#FF6B6B', '#4ECDC4', '#45B7D1', '#96CEB4', '#FFEAA7']),
62
+ text=df_wer["Model"],
63
+ textposition="top center",
64
+ hovertemplate='<b>%{text}</b><br>Speed: %{x:.2f}s<br>WER: %{y:.2f}%<extra></extra>'
65
+ ))
66
+ fig_scatter.update_layout(
67
+ title="Speed vs Accuracy Tradeoff",
68
+ xaxis_title="Inference Time (seconds)",
69
+ yaxis_title="WER (%)",
70
+ template="plotly_white",
71
+ height=400
72
+ )
73
+
74
+ # Create engine comparison visualization
75
+ fig_engine = go.Figure()
76
+ fig_engine.add_trace(go.Bar(
77
+ x=df_engine["Engine"],
78
+ y=df_engine["WER (%)"],
79
+ name="WER (%)",
80
+ marker_color='#4ECDC4',
81
+ text=df_engine["WER (%)"].round(2),
82
+ textposition='auto'
83
+ ))
84
+ fig_engine.update_layout(
85
+ title="WER by Engine (Base Model)",
86
+ xaxis_title="Engine",
87
+ yaxis_title="WER (%)",
88
+ template="plotly_white",
89
+ height=400
90
+ )
91
+
92
+ # Custom CSS
93
+ custom_css = """
94
+ .gradio-container {
95
+ font-family: 'Inter', sans-serif;
96
+ }
97
+ .limitation-box {
98
+ background-color: #FFF3CD;
99
+ border-left: 4px solid #FFC107;
100
+ padding: 15px;
101
+ margin: 10px 0;
102
+ }
103
+ .question-box {
104
+ background-color: #E3F2FD;
105
+ border-left: 4px solid #2196F3;
106
+ padding: 15px;
107
+ margin: 15px 0;
108
+ }
109
+ """
110
+
111
+ # Build the interface
112
+ with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
113
+ gr.Markdown(
114
+ """
115
+ # Local ASR/STT Benchmark Evaluation
116
+ ### A Single Sample Evaluation on Local Hardware
117
+
118
+ Testing different Whisper model sizes to find the optimal balance between accuracy and speed for daily transcription workflow.
119
+ """
120
+ )
121
+
122
+ with gr.Tabs():
123
+ # Tab 1: Overview & Test Sample
124
+ with gr.Tab("📊 Overview"):
125
+ gr.Markdown(
126
+ """
127
+ ## About This Evaluation
128
+
129
+ This was a "back of the envelope" style experiment to determine which Whisper model size works best
130
+ for daily transcription on local hardware, focusing on the tradeoff between accuracy (WER) and inference speed.
131
+ """
132
+ )
133
+
134
+ gr.Markdown("### 🎯 Test Sample")
135
+
136
+ if audio_exists:
137
+ gr.Audio(
138
+ value=str(audio_path),
139
+ label="Test Audio (001.wav)",
140
+ type="filepath"
141
+ )
142
+ else:
143
+ gr.Markdown("**Note:** Audio file will be added soon.")
144
+
145
+ gr.Markdown("### 📝 Reference Text (Ground Truth)")
146
+ gr.Textbox(
147
+ value=reference_text,
148
+ label="Reference Transcription",
149
+ lines=10,
150
+ max_lines=15,
151
+ interactive=False
152
+ )
153
+
154
+ gr.Markdown(
155
+ """
156
+ ### ⚠️ Important Limitations
157
+
158
+ - **Quick experiment**: Not a definitive scientific evaluation
159
+ - **Hardware specific**: AMD GPU with ROCm (not ideal for STT), using CPU inference
160
+ - **Single sample**: Results based on one audio clip
161
+ - **Variable conditions**: ASR accuracy depends on mic quality, background noise, speaking style
162
+ - **Personal use case**: Optimized for one user's voice and workflow
163
+ """
164
+ )
165
+
166
+ # Tab 2: Results & Visualizations
167
+ with gr.Tab("📈 Results"):
168
+ gr.Markdown("## Key Findings")
169
+
170
+ with gr.Row():
171
+ with gr.Column():
172
+ gr.Markdown(
173
+ """
174
+ ### Best Accuracy
175
+ **medium** model
176
+ - 6.07% WER
177
+ - 19.42s inference
178
+
179
+ ### Fastest
180
+ **tiny** model
181
+ - 15.05% WER
182
+ - 2.73s inference
183
+
184
+ ### Recommended for Daily Use
185
+ **base** model (faster-whisper)
186
+ - 9.95% WER
187
+ - ~5s inference
188
+ - Good balance
189
+ """
190
+ )
191
+
192
+ with gr.Column():
193
+ gr.Markdown(
194
+ """
195
+ ### Key Takeaways
196
+
197
+ 1. **Biggest jump**: tiny → base (15% → 10% WER)
198
+ 2. **Diminishing returns**: After base, accuracy gains are smaller
199
+ 3. **faster-whisper**: Same accuracy as OpenAI, 1.2x faster
200
+ 4. **distil-whisper**: Unexpectedly slower AND less accurate on this sample
201
+ """
202
+ )
203
+
204
+ gr.Markdown("## Interactive Visualizations")
205
+
206
+ with gr.Row():
207
+ gr.Plot(fig_wer, label="WER by Model Size")
208
+
209
+ with gr.Row():
210
+ gr.Plot(fig_scatter, label="Speed vs Accuracy")
211
+
212
+ with gr.Row():
213
+ gr.Plot(fig_engine, label="Engine Comparison")
214
+
215
+ gr.Markdown("## Original Charts from Benchmark")
216
+
217
+ with gr.Row():
218
+ with gr.Column():
219
+ gr.Image("results/wer_by_size.png", label="WER by Size")
220
+ with gr.Column():
221
+ gr.Image("results/speed_by_size.png", label="Speed by Size")
222
+
223
+ with gr.Row():
224
+ with gr.Column():
225
+ gr.Image("results/accuracy_speed_tradeoff.png", label="Accuracy vs Speed")
226
+ with gr.Column():
227
+ gr.Image("results/engine_comparison.png", label="Engine Comparison")
228
+
229
+ with gr.Row():
230
+ gr.Image("results/variants_comparison.png", label="All Variants Tested")
231
+
232
+ # Tab 3: Q&A
233
+ with gr.Tab("❓ Questions & Answers"):
234
+ gr.Markdown(
235
+ """
236
+ # Research Questions & Findings
237
+
238
+ ## Q1: How much does model size actually matter for accuracy?
239
+
240
+ **Answer:** On my hardware, diminishing returns set in around **medium**.
241
+
242
+ The biggest accuracy jump was from tiny (15.05% WER) → base (9.95% WER). After that, improvements are smaller:
243
+ - tiny → base: 5.1% improvement
244
+ - base → medium: 3.88% improvement
245
+ - medium → large-v3-turbo: Actually worse (1% regression)
246
+
247
+ The "sweet spot" depends on your use case:
248
+ - **Live transcription**: Even small lags matter → base or small
249
+ - **Batch processing**: Can afford slower → medium or large
250
+
251
+ ---
252
+
253
+ ## Q2: Is faster-whisper really as good as OpenAI Whisper?
254
+
255
+ **Answer:** Yes! On this test, identical accuracy with better speed.
256
+
257
+ Testing the base model:
258
+ - **faster-whisper**: 9.95% WER in 5.01s
259
+ - **openai-whisper**: 9.95% WER in 6.17s
260
+
261
+ faster-whisper was ~1.2x faster with no accuracy loss. Clear winner for my use case.
262
+
263
+ ---
264
+
265
+ ## Q3: What's the speed vs. accuracy tradeoff?
266
+
267
+ **Answer:** For daily transcription of my own voice, base or small hits the sweet spot.
268
+
269
+ - **tiny**: 2.73s but 15% WER is too rough
270
+ - **base**: 5s with 10% WER - acceptable for daily use
271
+ - **small**: Similar to base, slightly slower
272
+ - **medium**: 6% WER but 7x slower than tiny
273
+ - **large-v3-turbo**: 33s for 7% WER - overkill for casual use
274
+
275
+ ---
276
+
277
+ ## Q4: Which model should I use for my daily STT workflow?
278
+
279
+ **My personal answer:** base model with faster-whisper
280
+
281
+ **Why it works for me:**
282
+ - ~10% WER is acceptable for dictation (I can quickly fix errors)
283
+ - 5 seconds per clip is fast enough
284
+ - 140MB model size is manageable
285
+ - Good balance for daily workflow
286
+
287
+ **When I'd use something else:**
288
+ - **tiny**: Quick tests or very long recordings where speed matters most
289
+ - **medium/large**: Publishing or professional work needing better accuracy
290
+
291
+ ---
292
+
293
+ ## Bonus Finding: distil-whisper
294
+
295
+ I tested distil-whisper expecting it to be faster, but on my sample:
296
+ - **distil-whisper**: 21.6% WER in 38.49s ✗
297
+
298
+ Both slower AND less accurate than the standard models. Unexpected, but that's the data.
299
+ """
300
+ )
301
+
302
+ # Tab 4: Hardware & Setup
303
+ with gr.Tab("💻 Hardware & Setup"):
304
+ gr.Markdown(
305
+ """
306
+ ## Test Environment
307
+
308
+ ### Hardware
309
+ - **GPU**: AMD Radeon RX 7700 XT (ROCm available but using CPU inference)
310
+ - **CPU**: Intel Core i7-12700F (12 cores, 20 threads)
311
+ - **RAM**: 64 GB
312
+ - **OS**: Ubuntu 25.04
313
+
314
+ ### Why CPU Inference?
315
+ - AMD GPU with ROCm isn't ideal for STT workloads
316
+ - CPU inference provided more consistent results
317
+ - Your performance will differ based on your hardware
318
+
319
+ ### Models Tested
320
+
321
+ **Whisper model sizes:**
322
+ - tiny (39M params)
323
+ - base (74M params)
324
+ - small (244M params)
325
+ - medium (769M params)
326
+ - large-v3-turbo (809M params)
327
+
328
+ **Engines compared:**
329
+ - OpenAI Whisper (original implementation)
330
+ - faster-whisper (optimized CTranslate2)
331
+ - distil-whisper (distilled variant)
332
+
333
+ ### Metrics
334
+ - **WER (Word Error Rate)**: Lower is better - percentage of words transcribed incorrectly
335
+ - **Inference Time**: How long it takes to transcribe the audio sample
336
+
337
+ ## Running Your Own Tests
338
+
339
+ Want to benchmark on your own voice and hardware?
340
+
341
+ 1. Clone the repository: [github.com/danielrosehill/Local-ASR-STT-Benchmark](https://github.com/danielrosehill/Local-ASR-STT-Benchmark)
342
+ 2. Set up the conda environment (see `setup.md`)
343
+ 3. Record your own audio and create reference transcriptions
344
+ 4. Run the benchmark scripts
345
+ 5. Generate visualizations
346
+
347
+ Your results will likely differ based on:
348
+ - Your hardware (GPU/CPU)
349
+ - Your voice characteristics
350
+ - Your microphone quality
351
+ - Background noise conditions
352
+ - Speaking style and pace
353
+ """
354
+ )
355
+
356
+ # Tab 5: About
357
+ with gr.Tab("ℹ️ About"):
358
+ gr.Markdown(
359
+ """
360
+ ## About This Project
361
+
362
+ ### Motivation
363
+
364
+ I was tired of guessing which Whisper model size to use for speech-to-text. There are plenty of
365
+ benchmarks out there, but they're often:
366
+ - Run on different hardware than mine
367
+ - Tested on different voice characteristics
368
+ - Using different microphones and conditions
369
+
370
+ So I decided to run my own evaluation on my actual setup with my actual voice.
371
+
372
+ ### Why This Matters
373
+
374
+ If you're doing hours of transcription per day (like I am), optimizing your STT setup is worth it:
375
+ - Faster models = less waiting
376
+ - More accurate models = less editing
377
+ - Finding the sweet spot = better workflow
378
+
379
+ ### Next Steps
380
+
381
+ For a more robust evaluation, I'd want to:
382
+ - Test on multiple audio samples
383
+ - Include different speaking styles (casual, technical, professional)
384
+ - Test on different microphones
385
+ - Evaluate punctuation and capitalization accuracy
386
+ - Compare ASR (Automatic Speech Recognition) vs traditional STT
387
+ - Test GPU inference on NVIDIA hardware
388
+
389
+ ### Repository
390
+
391
+ Full benchmark code and results:
392
+ [github.com/danielrosehill/Local-ASR-STT-Benchmark](https://github.com/danielrosehill/Local-ASR-STT-Benchmark)
393
+
394
+ ### License
395
+
396
+ MIT License - Feel free to use and adapt for your own benchmarks!
397
+
398
+ ---
399
+
400
+ *Built with Gradio • Whisper models by OpenAI • Hosted on Hugging Face Spaces*
401
+ """
402
+ )
403
+
404
+ gr.Markdown(
405
+ """
406
+ ---
407
+ ### 📧 Questions or feedback?
408
+ Visit the [GitHub repository](https://github.com/danielrosehill/Local-ASR-STT-Benchmark) to open an issue or contribute.
409
+ """
410
+ )
411
+
412
+ if __name__ == "__main__":
413
+ demo.launch()
audio/README.md ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ # Audio Files
2
+
3
+ Place the test audio file `001.wav` here.
4
+
5
+ This is the audio sample that was used for the benchmark evaluation. It will be displayed in the Gradio app for users to listen to and compare with the transcription results.
6
+
7
+ Note: Audio files are tracked with Git LFS (configured in `.gitattributes`).
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio>=5.0.0
2
+ pandas>=2.0.0
3
+ plotly>=5.0.0
results/accuracy_speed_tradeoff.png ADDED

Git LFS Details

  • SHA256: 3f11e99d4dbec2c8f839f55543f253be772fb7e391fbf308318fab48f52d6d06
  • Pointer size: 131 Bytes
  • Size of remote file: 154 kB
results/engine_comparison.png ADDED

Git LFS Details

  • SHA256: a2929307182b1971d03ced130d6756a3f9a67bfd659571a3cecdd569df2afd05
  • Pointer size: 131 Bytes
  • Size of remote file: 145 kB
results/speed_by_size.png ADDED

Git LFS Details

  • SHA256: 2ed83003dbb6cb540d6910f953193dd8b497d595af9d4eb7ed841897abe3344f
  • Pointer size: 131 Bytes
  • Size of remote file: 144 kB
results/summary_stats.txt ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ === Model Size Comparison ===
3
+ Best accuracy: medium (WER: 6.07%)
4
+ Fastest: tiny (2.73s)
5
+ Best balance: tiny
6
+
7
+ === Engine Comparison ===
8
+ faster-whisper: WER=9.95%, Time=5.01s
9
+ openai-whisper: WER=9.95%, Time=6.17s
10
+
11
+ === Variant Comparison ===
12
+ faster-whisper: WER=9.95%, Time=4.87s
13
+ openai-whisper: WER=9.95%, Time=6.51s
14
+ distil-whisper: WER=21.60%, Time=38.49s
results/variants_comparison.png ADDED

Git LFS Details

  • SHA256: de084e2dfa64ed53778e74b5a6c1e6393b48082d81010a3cec913a4d22e3d034
  • Pointer size: 131 Bytes
  • Size of remote file: 375 kB
results/wer_by_size.png ADDED

Git LFS Details

  • SHA256: cafc2d667ebed2873bc1bfd991d8b40f33529172af65214ec8bad01e439a391f
  • Pointer size: 131 Bytes
  • Size of remote file: 143 kB
text/reference.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ So I've been working on this really interesting project lately, and honestly, it's been a bit of a rollercoaster. You know how sometimes you start something thinking it'll be quick and easy, but then you end up going down this rabbit hole? Yeah, that's basically what happened here.
2
+
3
+ The thing is, I wanted to test out different speech-to-text systems to see which one actually works best for my setup. I mean, there are so many options out there - Whisper, Vosk, you name it. But I figured the only way to really know is to just test them myself, right?
4
+
5
+ What's really cool is that I can run this stuff locally on my machine. No need to send my audio to some cloud service. Privacy matters, you know? Plus, with the GPU I've got, the processing should be pretty fast. At least that's the theory. We'll see how it actually performs when I get everything set up and running.
6
+
7
+ Here's the funny part though - I spent like three hours yesterday just trying to get the drivers working properly. Classic tech project experience, am I right? You'd think installing GPU drivers would be straightforward in 2025, but nope. Had to dig through forum posts from five years ago, try different kernel versions, the whole nine yards. But eventually I got it sorted out, and man, does it feel good when things finally click into place.
8
+
9
+ Oh, and another thing - I've been using speech-to-text myself for typing, which is kind of meta when you think about it. Testing speech recognition by creating test data through speech recognition. It's like inception or something. Sometimes the transcription messes up words, especially technical terms or names, but overall it's gotten so much better than it used to be.
10
+
11
+ The plan is to record myself reading different types of content - technical documentation, casual conversation like this, maybe some news articles, stories, that kind of thing. That way I can see if certain models handle specific styles better than others. Maybe one's great at technical jargon but struggles with natural speech patterns, or vice versa. Should be interesting to find out.
12
+
13
+ I'm also curious about punctuation and formatting. Like, does it know when to put commas? Does it capitalize proper nouns correctly? These little details matter way more than you'd think when you're actually using these systems for real work. Nobody wants to spend hours fixing transcription errors just to save a few minutes of typing.