File size: 4,592 Bytes
7202cd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import time
from pathlib import Path
from typing import List, Optional

from sentence_transformers import SentenceTransformer
from langchain_core.documents import Document
from langchain_chroma import Chroma
from langchain_core.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain_google_genai import ChatGoogleGenerativeAI


# ---------------------------
# QWEN EMBEDDINGS WRAPPER
# ---------------------------
class QwenHFEmbeddings:
    def __init__(self, model: str = "Qwen/Qwen3-Embedding-0.6B", batch_size: int = 8):
        print(f"[INIT] Loading embedding model: {model}")
        self.model = SentenceTransformer(model)
        self.batch_size = batch_size

    def _encode(self, texts, prompt_name=None):
        if isinstance(texts, str):
            texts = [texts]

        outputs = []
        for i in range(0, len(texts), self.batch_size):
            batch = texts[i:i+self.batch_size]
            emb = self.model.encode(
                batch, 
                prompt_name=prompt_name, 
                convert_to_numpy=True
            ).tolist()
            outputs.extend(emb)
        return outputs

    def embed_documents(self, texts):
        return self._encode(texts)

    def embed_query(self, text):
        return self._encode(text, prompt_name="query")[0]


# ============================
# RAG ENGINE
# ============================
class NewsLegalAnalyzer:
    def __init__(self, db_path: str = "db_hukum_Qwen"):
        self.db_path = Path(db_path)
        self.embeddings = None
        self.vectordb = None
        self.retriever = None
        self.llm = None
        self.chain = None

    # ---------------------------
    # LOAD MODELS
    # ---------------------------
    def load_embeddings(self):
        self.embeddings = QwenHFEmbeddings()
        return True

    def load_vector_db(self):
        if not self.db_path.exists():
            raise FileNotFoundError("Folder database tidak ditemukan.")

        self.vectordb = Chroma(
            persist_directory=str(self.db_path),
            embedding_function=self.embeddings
        )
        total = len(self.vectordb.get()["ids"])
        print(f"[DB] Loaded {total} documents.")
        return True

    def load_llm(self, model="gemini-2.5-flash-lite"):
        if "GOOGLE_API_KEY" not in os.environ:
            raise EnvironmentError("GOOGLE_API_KEY belum diset di Hugging Face Secrets.")

        self.llm = ChatGoogleGenerativeAI(
            model=model,
            temperature=0.4
        )
        return True

    # ---------------------------
    # RETRIEVER
    # ---------------------------
    def setup_retriever(self, k=15, fetch_k=50):
        self.retriever = self.vectordb.as_retriever(
            search_type="mmr",
            search_kwargs={"k": k, "fetch_k": fetch_k}
        )
        return True

    # ---------------------------
    # CREATE CHAIN
    # ---------------------------
    def create_chain(self):
        template = """

Anda adalah Asisten Editor Berita Kriminal.

Tugas Anda adalah memberikan pasal yang relevan terhadap kronologi kejadian.



REFERENSI:

{context}



BERITA:

{question}



Jawaban:

"""
        prompt = PromptTemplate(
            template=template,
            input_variables=["context", "question"]
        )

        def format_docs(docs: List[Document]) -> str:
            if not docs:
                return "Tidak ada referensi hukum ditemukan."
            return "\n\n".join(
                f"[{i+1}] {d.metadata.get('sumber_uu')}:\n{d.page_content}"
                for i, d in enumerate(docs)
            )

        self.chain = (
            {"context": self.retriever | format_docs, "question": RunnablePassthrough()}
            | prompt
            | self.llm
            | StrOutputParser()
        )

    # ---------------------------
    # RUN ANALYSIS
    # ---------------------------
    def analyze(self, text: str) -> str:
        if not self.chain:
            raise RuntimeError("Chain belum dibuat.")

        return self.chain.invoke(text)

    # ---------------------------
    # INIT ALL
    # ---------------------------
    def initialize(self):
        self.load_embeddings()
        self.load_vector_db()
        self.setup_retriever()
        self.load_llm()
        self.create_chain()
        print("[INIT] Semua komponen siap.")