Update app.py
Browse files
app.py
CHANGED
|
@@ -18,6 +18,32 @@ import gc
|
|
| 18 |
# 메모리 관리 설정 추가
|
| 19 |
import torch.backends.cuda
|
| 20 |
torch.backends.cuda.max_split_size_mb = 128 # 메모리 분할 크기 제한
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
# 메모리 관리 설정
|
| 22 |
torch.cuda.empty_cache()
|
| 23 |
gc.collect()
|
|
@@ -30,6 +56,16 @@ def clear_memory():
|
|
| 30 |
torch.cuda.synchronize()
|
| 31 |
gc.collect()
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
# 상수 정의
|
| 34 |
MAX_SEED = 2**32 - 1
|
| 35 |
BASE_MODEL = "black-forest-labs/FLUX.1-dev"
|
|
@@ -194,13 +230,98 @@ def generate_fashion(prompt, mode, cfg_scale, steps, randomize_seed, seed, width
|
|
| 194 |
clear_memory() # 오류 발생 시에도 메모리 정리
|
| 195 |
raise e
|
| 196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
def leffa_predict_vt(src_image_path, ref_image_path):
|
| 198 |
return leffa_predict(src_image_path, ref_image_path, "virtual_tryon")
|
| 199 |
|
| 200 |
def leffa_predict_pt(src_image_path, ref_image_path):
|
| 201 |
return leffa_predict(src_image_path, ref_image_path, "pose_transfer")
|
| 202 |
-
|
| 203 |
-
|
| 204 |
# Gradio 인터페이스
|
| 205 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange") as demo:
|
| 206 |
gr.Markdown("# 🎭 Fashion Studio & Virtual Try-on")
|
|
|
|
| 18 |
# 메모리 관리 설정 추가
|
| 19 |
import torch.backends.cuda
|
| 20 |
torch.backends.cuda.max_split_size_mb = 128 # 메모리 분할 크기 제한
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# 전역 변수로 모델들을 선언
|
| 24 |
+
fashion_pipe = None
|
| 25 |
+
translator = None
|
| 26 |
+
mask_predictor = None
|
| 27 |
+
densepose_predictor = None
|
| 28 |
+
vt_model = None
|
| 29 |
+
pt_model = None
|
| 30 |
+
vt_inference = None
|
| 31 |
+
pt_inference = None
|
| 32 |
+
|
| 33 |
+
# 초기화 함수
|
| 34 |
+
def initialize_models():
|
| 35 |
+
global fashion_pipe
|
| 36 |
+
if fashion_pipe is None:
|
| 37 |
+
fashion_pipe = DiffusionPipeline.from_pretrained(
|
| 38 |
+
BASE_MODEL,
|
| 39 |
+
torch_dtype=torch.float16,
|
| 40 |
+
use_auth_token=HF_TOKEN
|
| 41 |
+
)
|
| 42 |
+
fashion_pipe.to(device)
|
| 43 |
+
|
| 44 |
+
# 앱 시작 시 모델 초기화
|
| 45 |
+
initialize_models()
|
| 46 |
+
|
| 47 |
# 메모리 관리 설정
|
| 48 |
torch.cuda.empty_cache()
|
| 49 |
gc.collect()
|
|
|
|
| 56 |
torch.cuda.synchronize()
|
| 57 |
gc.collect()
|
| 58 |
|
| 59 |
+
# 모델 사용 후 메모리 해제
|
| 60 |
+
def unload_models():
|
| 61 |
+
global fashion_pipe, translator, mask_predictor, densepose_predictor, vt_model, pt_model
|
| 62 |
+
fashion_pipe = None
|
| 63 |
+
translator = None
|
| 64 |
+
mask_predictor = None
|
| 65 |
+
densepose_predictor = None
|
| 66 |
+
vt_model = None
|
| 67 |
+
pt_model = None
|
| 68 |
+
clear_memory()
|
| 69 |
# 상수 정의
|
| 70 |
MAX_SEED = 2**32 - 1
|
| 71 |
BASE_MODEL = "black-forest-labs/FLUX.1-dev"
|
|
|
|
| 230 |
clear_memory() # 오류 발생 시에도 메모리 정리
|
| 231 |
raise e
|
| 232 |
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def leffa_predict(src_image_path, ref_image_path, control_type):
|
| 236 |
+
global mask_predictor, densepose_predictor, vt_model, pt_model, vt_inference, pt_inference
|
| 237 |
+
|
| 238 |
+
clear_memory()
|
| 239 |
+
|
| 240 |
+
try:
|
| 241 |
+
# 필요한 모델 초기화
|
| 242 |
+
if control_type == "virtual_tryon" and vt_model is None:
|
| 243 |
+
vt_model = LeffaModel(
|
| 244 |
+
pretrained_model_name_or_path="./ckpts/stable-diffusion-inpainting",
|
| 245 |
+
pretrained_model="./ckpts/virtual_tryon.pth"
|
| 246 |
+
)
|
| 247 |
+
vt_model.to(device)
|
| 248 |
+
vt_inference = LeffaInference(model=vt_model)
|
| 249 |
+
|
| 250 |
+
elif control_type == "pose_transfer" and pt_model is None:
|
| 251 |
+
pt_model = LeffaModel(
|
| 252 |
+
pretrained_model_name_or_path="./ckpts/stable-diffusion-xl-1.0-inpainting-0.1",
|
| 253 |
+
pretrained_model="./ckpts/pose_transfer.pth"
|
| 254 |
+
)
|
| 255 |
+
pt_model.to(device)
|
| 256 |
+
pt_inference = LeffaInference(model=pt_model)
|
| 257 |
+
|
| 258 |
+
if mask_predictor is None:
|
| 259 |
+
mask_predictor = AutoMasker(
|
| 260 |
+
densepose_path="./ckpts/densepose",
|
| 261 |
+
schp_path="./ckpts/schp",
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
if densepose_predictor is None:
|
| 265 |
+
densepose_predictor = DensePosePredictor(
|
| 266 |
+
config_path="./ckpts/densepose/densepose_rcnn_R_50_FPN_s1x.yaml",
|
| 267 |
+
weights_path="./ckpts/densepose/model_final_162be9.pkl",
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
# 이미지 처리
|
| 271 |
+
src_image = Image.open(src_image_path)
|
| 272 |
+
ref_image = Image.open(ref_image_path)
|
| 273 |
+
src_image = resize_and_center(src_image, 768, 1024)
|
| 274 |
+
ref_image = resize_and_center(ref_image, 768, 1024)
|
| 275 |
+
|
| 276 |
+
src_image_array = np.array(src_image)
|
| 277 |
+
ref_image_array = np.array(ref_image)
|
| 278 |
+
|
| 279 |
+
# Mask 생성
|
| 280 |
+
if control_type == "virtual_tryon":
|
| 281 |
+
src_image = src_image.convert("RGB")
|
| 282 |
+
mask = mask_predictor(src_image, "upper")["mask"]
|
| 283 |
+
else:
|
| 284 |
+
mask = Image.fromarray(np.ones_like(src_image_array) * 255)
|
| 285 |
+
|
| 286 |
+
# DensePose 예측
|
| 287 |
+
src_image_iuv_array = densepose_predictor.predict_iuv(src_image_array)
|
| 288 |
+
src_image_seg_array = densepose_predictor.predict_seg(src_image_array)
|
| 289 |
+
src_image_iuv = Image.fromarray(src_image_iuv_array)
|
| 290 |
+
src_image_seg = Image.fromarray(src_image_seg_array)
|
| 291 |
+
|
| 292 |
+
if control_type == "virtual_tryon":
|
| 293 |
+
densepose = src_image_seg
|
| 294 |
+
inference = vt_inference
|
| 295 |
+
else:
|
| 296 |
+
densepose = src_image_iuv
|
| 297 |
+
inference = pt_inference
|
| 298 |
+
|
| 299 |
+
# Leffa 변환 및 추론
|
| 300 |
+
transform = LeffaTransform()
|
| 301 |
+
data = {
|
| 302 |
+
"src_image": [src_image],
|
| 303 |
+
"ref_image": [ref_image],
|
| 304 |
+
"mask": [mask],
|
| 305 |
+
"densepose": [densepose],
|
| 306 |
+
}
|
| 307 |
+
data = transform(data)
|
| 308 |
+
|
| 309 |
+
output = inference(data)
|
| 310 |
+
gen_image = output["generated_image"][0]
|
| 311 |
+
|
| 312 |
+
clear_memory()
|
| 313 |
+
return np.array(gen_image)
|
| 314 |
+
|
| 315 |
+
except Exception as e:
|
| 316 |
+
clear_memory()
|
| 317 |
+
raise e
|
| 318 |
+
|
| 319 |
def leffa_predict_vt(src_image_path, ref_image_path):
|
| 320 |
return leffa_predict(src_image_path, ref_image_path, "virtual_tryon")
|
| 321 |
|
| 322 |
def leffa_predict_pt(src_image_path, ref_image_path):
|
| 323 |
return leffa_predict(src_image_path, ref_image_path, "pose_transfer")
|
| 324 |
+
|
|
|
|
| 325 |
# Gradio 인터페이스
|
| 326 |
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange") as demo:
|
| 327 |
gr.Markdown("# 🎭 Fashion Studio & Virtual Try-on")
|