Spaces:
Sleeping
Sleeping
File size: 23,713 Bytes
4b112ae d906888 4b112ae 9ad9c82 4b112ae 2e6da1f 4b112ae 9ad9c82 d906888 4b112ae d906888 4b112ae d906888 9ad9c82 4b112ae 9ad9c82 4b112ae 9ad9c82 4b112ae d906888 4b112ae d906888 4b112ae 2e6da1f 9ad9c82 d906888 4b112ae 9ad9c82 4b112ae 2e6da1f 4b112ae d906888 4b112ae d906888 4b112ae 9ad9c82 4b112ae 2e6da1f 9ad9c82 d906888 4b112ae 9ad9c82 4b112ae 9ad9c82 4b112ae 9ad9c82 4b112ae 9ad9c82 4b112ae 9ad9c82 d906888 2e6da1f d906888 2e6da1f d906888 2e6da1f d906888 2e6da1f d906888 2e6da1f d906888 2e6da1f d906888 2e6da1f d906888 2e6da1f d906888 2e6da1f d906888 2e6da1f d906888 2e6da1f d906888 2e6da1f d906888 2e6da1f d906888 2e6da1f d906888 2e6da1f d906888 2e6da1f d906888 2e6da1f 9ad9c82 4b112ae d906888 4b112ae d906888 4b112ae d906888 2e6da1f 4b112ae d906888 9ad9c82 4b112ae 9ad9c82 d906888 9ad9c82 4b112ae 2e6da1f 4b112ae 9ad9c82 d906888 2e6da1f 4b112ae d906888 9ad9c82 d906888 4b112ae d906888 2e6da1f 9ad9c82 d906888 9ad9c82 4b112ae 2e6da1f 9ad9c82 2e6da1f 4b112ae 9ad9c82 4b112ae d906888 4b112ae 9ad9c82 4b112ae d906888 4b112ae d906888 4b112ae d906888 9ad9c82 d906888 4b112ae d906888 4b112ae d906888 4b112ae d906888 9ad9c82 d906888 9ad9c82 9da6b88 2e6da1f 9ad9c82 4b112ae 9ad9c82 4b112ae d906888 4b112ae 9ad9c82 4b112ae d906888 4b112ae d906888 4b112ae d906888 4b112ae 9ad9c82 2e6da1f 9ad9c82 4b112ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
# ui/csv_tab.py
"""
Builds the CSV-upload tab (batch metrics).
- Summary table: **only global scores** (no S/O/A/P). Labels are short (e.g., "BLEU", not "BLEU GLOBAL").
- Detailed table: shows only global F1 columns (colored) and, when available, dark badges for P/R.
- CSV export includes whatever columns the backend produced; UI renders only the globals.
- Upload "Status" is collapsed into the file input's label.
- Errors (missing CSV, columns not chosen, etc.) are displayed in the status textbox under "Run Evaluation".
"""
import os
import time
import tempfile
import gradio as gr
import pandas as pd
from metrics import compute_all_metrics_batch, BERT_FRIENDLY_TO_MODEL
from ui.widgets import MetricCheckboxGroup, BertCheckboxGroup
from utils.file_utils import smart_read_csv
from utils.colors_utils import get_metric_color
from utils.tokenizer_refgen import generate_diff_html
# ------------------- Summary HTML builder (GLOBAL ONLY) -------------------
def build_summary_html(result_df: pd.DataFrame, selected_metrics: list, bert_models: list | None = None) -> str:
def safe_stats(col):
if col not in result_df.columns:
return None
s = result_df[col].dropna()
if s.empty:
return None
s = s.astype(float)
avg, mn, mx = s.mean(), s.min(), s.max()
def audio_id_for(v):
subset = result_df[result_df[col].astype(float) == v]
if not subset.empty and "code_audio_transcription" in subset.columns:
aid = subset.iloc[0]["code_audio_transcription"]
try:
return int(aid)
except Exception:
return aid
return ""
return {"avg": avg, "min": mn, "min_id": audio_id_for(mn), "max": mx, "max_id": audio_id_for(mx)}
rows = []
# NOTE: We used to show per-section rows (S/O/A/P) when a single metric was selected.
# That logic has been **removed**; we now present **only global** rows for all metrics.
if "BLEU" in selected_metrics:
s = safe_stats("bleu_global")
if s:
rows.append(("bleu_global", s))
if "BLEURT" in selected_metrics:
s = safe_stats("bleurt_global")
if s:
rows.append(("bleurt_global", s))
if "ROUGE" in selected_metrics:
s = safe_stats("rougeL_global_f1")
if s:
rows.append(("rougeL_global_f1", s))
# BERTScore (global only)
if "BERTSCORE" in selected_metrics and bert_models:
# NOTE: Previously, if only BERTScore with one model was selected, we added per-section rows.
# That behavior is **disabled**. We only show global columns:
# - bertscore_<short>_f1 (multi-model)
# - or bertscore_global_f1 (if that's what backend produced)
for friendly in bert_models:
mid = BERT_FRIENDLY_TO_MODEL.get(friendly)
if not mid:
continue
short = mid.split("/")[-1].replace("-", "_")
col = f"bertscore_{short}_f1" if f"bertscore_{short}_f1" in result_df.columns else "bertscore_global_f1"
s = safe_stats(col)
if s:
rows.append((col, s))
if not rows:
return "<div style='padding:8px;background:#1f1f1f;color:#eee;border-radius:6px;'>No summary available.</div>"
# Build HTML table
html = """
<div style="margin-bottom:12px;overflow-x:auto;">
<div style="font-weight:600;margin-bottom:4px;color:#f5f5f5;font-size:16px;">Summary Statistics</div>
<table style="border-collapse:collapse;width:100%;font-family:system-ui,-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,sans-serif;border-radius:8px;overflow:hidden;min-width:500px;">
<thead><tr>
<th style="padding:8px 12px;background:#2d3748;color:#fff;text-align:left;font-weight:600;">Metric</th>
<th style="padding:8px 12px;background:#2d3748;color:#fff;text-align:center;font-weight:600;">Avg</th>
<th style="padding:8px 12px;background:#2d3748;color:#fff;text-align:center;font-weight:600;">Min (ID)</th>
<th style="padding:8px 12px;background:#2d3748;color:#fff;text-align:center;font-weight:600;">Max (ID)</th>
</tr></thead><tbody>
"""
for col, stat in rows:
# Pretty names (drop "GLOBAL")
if col == "bleu_global":
name = "BLEU"
elif col == "bleurt_global":
name = "BLEURT"
elif col == "rougeL_global_f1":
name = "ROUGE-L"
elif col.startswith("bertscore_"):
if col == "bertscore_global_f1":
name = "BERTSCORE"
else:
label = " ".join(col.split("_")[1:-1]).upper()
name = f"BERTSCORE {label}" if label else "BERTSCORE"
else:
name = col.replace("_", " ").upper()
avg = f"{stat['avg']:.4f}"
mn = f"{stat['min']:.4f} ({stat['min_id']})" if stat['min_id'] != "" else f"{stat['min']:.4f}"
mx = f"{stat['max']:.4f} ({stat['max_id']})" if stat['max_id'] != "" else f"{stat['max']:.4f}"
# Color scale by metric family (F1)
if col.startswith("bleu_"):
ca, cm, cx = get_metric_color(stat['avg'], "BLEU"), get_metric_color(stat['min'], "BLEU"), get_metric_color(stat['max'], "BLEU")
elif col.startswith("bleurt_"):
ca, cm, cx = get_metric_color(stat['avg'], "BLEURT"), get_metric_color(stat['min'], "BLEURT"), get_metric_color(stat['max'], "BLEURT")
elif col.startswith("rougeL_"):
ca, cm, cx = get_metric_color(stat['avg'], "ROUGE"), get_metric_color(stat['min'], "ROUGE"), get_metric_color(stat['max'], "ROUGE")
else:
ca, cm, cx = get_metric_color(stat['avg'], "BERTSCORE"), get_metric_color(stat['min'], "BERTSCORE"), get_metric_color(stat['max'], "BERTSCORE")
html += f"""
<tr style="background:#0f1218;">
<td style="padding:8px 12px;border:1px solid #2f3240;color:#fff;white-space:nowrap;">{name}</td>
<td style="padding:8px 12px;border:1px solid #2f3240;background:{ca};color:#fff;text-align:center;white-space:nowrap;">{avg}</td>
<td style="padding:8px 12px;border:1px solid #2f3240;background:{cm};color:#fff;text-align:center;white-space:nowrap;">{mn}</td>
<td style="padding:8px 12px;border:1px solid #2f3240;background:{cx};color:#fff;text-align:center;white-space:nowrap;">{mx}</td>
</tr>
"""
html += "</tbody></table></div>"
return html
# ------------------- Detailed table (GLOBAL ONLY, F1 colored + dark P/R badges) -------------------
def render_results_table_html(result_df: pd.DataFrame) -> str:
if result_df is None or result_df.empty:
return "<div style='padding:8px;background:#1f1f1f;color:#eee;border-radius:6px;'>No results.</div>"
# Keep only *global* F1 columns (skip *_p/_r and any S/O/A/P)
def is_global_f1(col: str) -> bool:
if col == "code_audio_transcription":
return False
if col.endswith("_p") or col.endswith("_r"):
return False
if col.startswith("bleu_"):
return col == "bleu_global"
if col.startswith("bleurt_"):
return col == "bleurt_global"
if col.startswith("rougeL_"):
return col == "rougeL_global_f1"
if col.startswith("bertscore_"):
parts = col.split("_")
# Exclude per-section: bertscore_S_f1, etc.
if len(parts) >= 2 and parts[1] in {"S", "O", "A", "P"}:
return False
# Allow model-specific or "bertscore_global_f1"
return parts[-1] == "f1" or col == "bertscore_global_f1"
return False
f1_cols = [c for c in result_df.columns if is_global_f1(c)]
# Sort for readability: BLEU, BLEURT, ROUGE-L, BERTSCORE (...)
def _grp_key(col):
if col.startswith("bleu_"):
g = 0
elif col.startswith("bleurt_"):
g = 1
elif col.startswith("rougeL_"):
g = 2
elif col.startswith("bertscore_"):
g = 3
else:
g = 9
return (g, col)
f1_cols = sorted(f1_cols, key=_grp_key)
# HTML table
html = [
"<div style='overflow-x:auto;'>",
"<div style='font-weight:600;margin:8px 0;color:#f5f5f5;font-size:16px;'>Individual Results</div>",
"<table style='border-collapse:collapse;width:100%;font-family:system-ui,-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,sans-serif;border-radius:8px;overflow:hidden;'>",
"<thead><tr>",
"<th style='padding:8px 12px;background:#2d3748;color:#fff;text-align:left;font-weight:600;white-space:nowrap;'>ID</th>",
]
def pretty_header(col: str) -> str:
if col == "bleu_global":
return "BLEU"
if col == "bleurt_global":
return "BLEURT"
if col == "rougeL_global_f1":
return "ROUGE-L"
if col.startswith("bertscore_"):
if col == "bertscore_global_f1":
return "BERTSCORE"
label = " ".join(col.split("_")[1:-1]).upper()
return f"BERTSCORE {label}" if label else "BERTSCORE"
return col.replace("_", " ").upper()
for col in f1_cols:
html.append(
f"<th style='padding:8px 12px;background:#2d3748;color:#fff;text-align:center;font-weight:600;white-space:nowrap;'>{pretty_header(col)}</th>"
)
html.append("</tr></thead><tbody>")
for _, row in result_df.iterrows():
rid = row.get("code_audio_transcription", "")
try:
rid = int(rid)
except Exception:
pass
html.append("<tr style='background:#0f1218;'>")
html.append(f"<td style='padding:8px 12px;border:1px solid #2f3240;color:#fff;white-space:nowrap;'>{rid}</td>")
for col in f1_cols:
val = row.get(col, None)
# figure metric family & pick P/R columns accordingly
metric_kind = "BERTSCORE"
p_text = r_text = ""
if col.startswith("bleu_"):
metric_kind = "BLEU"
# BLEU: no P/R
elif col.startswith("bleurt_"):
metric_kind = "BLEURT"
elif col.startswith("rougeL_"):
metric_kind = "ROUGE"
base = "rougeL_global" # global root
pcol, rcol = f"{base}_p", f"{base}_r"
p = row.get(pcol, None)
r = row.get(rcol, None)
p_text = f"P: {p:.4f}" if isinstance(p, (int, float)) else ""
r_text = f"R: {r:.4f}" if isinstance(r, (int, float)) else ""
elif col.startswith("bertscore_"):
metric_kind = "BERTSCORE"
# try model-specific first
base = col[:-3] if col.endswith("_f1") else col # strip trailing _f1
pcol, rcol = f"{base}_p", f"{base}_r"
if pcol not in result_df.columns and rcol not in result_df.columns:
# fallback to "bertscore_global" naming
pcol, rcol = "bertscore_global_p", "bertscore_global_r"
p = row.get(pcol, None)
r = row.get(rcol, None)
p_text = f"P: {p:.4f}" if isinstance(p, (int, float)) else ""
r_text = f"R: {r:.4f}" if isinstance(r, (int, float)) else ""
if isinstance(val, (int, float)):
bg = get_metric_color(float(val), metric_kind)
val_text = f"{float(val):.4f}"
else:
bg = "transparent"
val_text = "—"
# Dark badges for P/R
pills = []
if p_text:
pills.append("<span style='padding:1px 6px;border-radius:999px;background:rgba(0,0,0,.48);color:#fff;display:inline-block;'>"
f"{p_text}</span>")
if r_text:
pills.append("<span style='padding:1px 6px;border-radius:999px;background:rgba(0,0,0,.48);color:#fff;display:inline-block;margin-left:6px;'>"
f"{r_text}</span>")
badges = ""
if pills:
badges = "<div style='font-size:12px;margin-top:4px;line-height:1.2;'>" + "".join(pills) + "</div>"
html.append(
f"<td style='padding:8px 12px;border:1px solid #2f3240;background:{bg};color:#fff;text-align:center;white-space:nowrap;'>"
f"{val_text}{badges}</td>"
)
html.append("</tr>")
html.append("</tbody></table></div>")
return "".join(html)
# ------------------- Tab builder -------------------
def build_csv_tab():
with gr.Blocks() as tab:
state_df = gr.State() # original uploaded DataFrame
state_pairs = gr.State() # standardized pairs: id + reference + generated
state_result = gr.State() # metrics result DataFrame for export
gr.Markdown("# RUN AN EXPERIMENT VIA CSV UPLOAD")
gr.Markdown(
"Upload a CSV of reference/generated text pairs, map the columns, pick metrics, and run a batch evaluation. \n "
"F1 is highlighted in color; Precision/Recall appear as small dark badges."
)
gr.Markdown("## Experiment Configuration")
# 1) Upload CSV (status collapsed into the label)
gr.Markdown("### Upload CSV")
gr.Markdown("Provide a CSV file containing your data. It should include columns for the reference text, the generated text, and an identifier (e.g., audio ID).")
with gr.Row():
file_input = gr.File(label="Upload CSV", file_types=[".csv"])
# 2) Map Columns
gr.Markdown("### Map Columns")
gr.Markdown("Select which columns in your CSV correspond to the reference text, generated text, and audio/example ID.")
with gr.Row(visible=False) as mapping:
ref_col = gr.Dropdown(label="Reference Column", choices=[])
gen_col = gr.Dropdown(label="Generated Column", choices=[])
id_col = gr.Dropdown(label="Audio ID Column", choices=[])
# 3) Select Metrics
gr.Markdown("### Select Metrics")
metric_selector = MetricCheckboxGroup()
bert_model_selector = BertCheckboxGroup()
# ---------- Divider before RESULTS ----------
gr.HTML("""<div style="height:1px;margin:22px 0;background:
linear-gradient(90deg, rgba(0,0,0,0) 0%, #4a5568 35%, #4a5568 65%, rgba(0,0,0,0) 100%);"></div>""")
gr.Markdown("# RESULTS")
# Emphasize the run button
gr.HTML("""
<style>
#run-eval-btn button {
background: linear-gradient(135deg, #3b82f6 0%, #2563eb 100%) !important;
color: #fff !important;
border: none !important;
box-shadow: 0 6px 16px rgba(0,0,0,.25);
}
#run-eval-btn button:hover { filter: brightness(1.08); transform: translateY(-1px); }
</style>
""")
# 4) Run Evaluation (+ Export control)
with gr.Row():
run_btn = gr.Button("🚀 Run Evaluation", variant="primary", elem_id="run-eval-btn")
download_btn = gr.DownloadButton(label="⬇️ Export full results (CSV)", visible=False)
# This Text box will display both success and error messages
output_status = gr.Text()
summary_output = gr.HTML()
table_output = gr.HTML()
# 5) Inspect example
gr.Markdown("### Inspect an Example")
gr.Markdown("Pick an example by its ID to view the reference vs generated text with token-level differences highlighted.")
with gr.Accordion("🔍 Show reference & generated text", open=False):
pick_id = gr.Dropdown(label="Pick an Audio ID", choices=[])
ref_disp = gr.Textbox(label="Reference Text", lines=6, interactive=False)
gen_disp = gr.Textbox(label="Generated Text", lines=6, interactive=False)
diff_disp= gr.HTML()
# ---- Handlers ----
def handle_upload(f):
if not f:
# reset label & hide mapping
return (
None,
gr.update(choices=[]), gr.update(choices=[]), gr.update(choices=[]),
gr.update(visible=False),
gr.update(label="Upload CSV")
)
df = smart_read_csv(f.name)
cols = list(df.columns)
return (
df,
gr.update(choices=cols, value=None),
gr.update(choices=cols, value=None),
gr.update(choices=cols, value=None),
gr.update(visible=True),
gr.update(label="Upload CSV — OK: selecione as colunas.")
)
def run_batch(df, r, g, i, mets, berts):
# Pre-flight validation: CSV uploaded?
if df is None:
return (
"Erro: por favor faça upload de um CSV e selecione as colunas.",
"", "", gr.update(choices=[]), None, None, gr.update(visible=False)
)
# Columns chosen?
if not r or not g or not i:
return (
"Erro: selecione as colunas de Reference, Generated e Audio ID.",
"", "", gr.update(choices=[]), None, None, gr.update(visible=False)
)
# Columns exist?
missing = [c for c in [i, r, g] if c not in df.columns]
if missing:
return (
f"Erro: as colunas não existem no CSV: {missing}",
"", "", gr.update(choices=[]), None, None, gr.update(visible=False)
)
# Metrics chosen?
if not mets:
return (
"Erro: selecione pelo menos uma métrica.",
"", "", gr.update(choices=[]), None, None, gr.update(visible=False)
)
# Rename into standard schema (this is what we'll use for "Inspect an Example")
try:
sub = df[[i, r, g]].rename(
columns={i: "code_audio_transcription", r: "dsc_reference_free_text", g: "dsc_generated_clinical_report"}
)
except Exception as e:
return (
f"Erro ao preparar dados: {e}",
"", "", gr.update(choices=[]), None, None, gr.update(visible=False)
)
# Compute metrics
try:
result = compute_all_metrics_batch(
sub,
mets,
berts if "BERTSCORE" in (mets or []) else None
)
except Exception as e:
return (
f"Erro ao calcular métricas: {e}",
"", "", gr.update(choices=[]), None, None, gr.update(visible=False)
)
# Normalize IDs for dropdown
try:
raw_ids = result["code_audio_transcription"].dropna().unique().tolist()
ids = []
for x in raw_ids:
try:
ids.append(int(x))
except Exception:
ids.append(x)
ids = sorted(ids, key=lambda z: (not isinstance(z, int), z))
except Exception:
ids = []
# Build HTML views
try:
summary = build_summary_html(result, mets, berts if "BERTSCORE" in (mets or []) else None)
table = render_results_table_html(result)
except Exception as e:
return (
f"Erro ao renderizar resultados: {e}",
"", "", gr.update(choices=ids, value=None), None, None, gr.update(visible=False)
)
# Keep results for export & show download button
# Also keep standardized pairs (sub) for the "Inspect an Example" view
return (
"Métricas calculadas com sucesso.",
summary,
table,
gr.update(choices=ids, value=None),
result,
sub,
gr.update(visible=True),
)
def show_example(pairs_df, audio_id):
# Use the standardized pairs dataframe (id + reference + generated)
if pairs_df is None or audio_id is None:
return "", "", ""
try:
row = pairs_df[pairs_df["code_audio_transcription"] == audio_id]
if row.empty:
# Try float cast fallback for IDs that come as strings
try:
audio_id2 = float(audio_id)
row = pairs_df[pairs_df["code_audio_transcription"] == audio_id2]
except Exception:
return "", "", ""
if row.empty:
return "", "", ""
row = row.iloc[0]
ref_txt = row["dsc_reference_free_text"]
gen_txt = row["dsc_generated_clinical_report"]
return ref_txt, gen_txt, generate_diff_html(ref_txt, gen_txt)
except Exception:
return "", "", ""
def _export_results_csv(df: pd.DataFrame | None) -> str:
# Always export with comma separator; include ALL columns that were computed
if df is None or df.empty:
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv")
with open(tmp.name, "w", encoding="utf-8") as f:
f.write("no_data\n")
return tmp.name
ts = time.strftime("%Y%m%d_%H%M%S")
tmp_path = os.path.join(tempfile.gettempdir(), f"automatic_metrics_{ts}.csv")
df.to_csv(tmp_path, sep=",", index=False)
return tmp_path
# ---- Wiring ----
file_input.change(
fn=handle_upload,
inputs=[file_input],
outputs=[state_df, ref_col, gen_col, id_col, mapping, file_input], # update label in place
)
metric_selector.change(
fn=lambda ms: gr.update(visible="BERTSCORE" in ms),
inputs=[metric_selector],
outputs=[bert_model_selector],
)
run_btn.click(
fn=run_batch,
inputs=[state_df, ref_col, gen_col, id_col, metric_selector, bert_model_selector],
outputs=[output_status, summary_output, table_output, pick_id, state_result, state_pairs, download_btn],
)
# Use standardized pairs DF for example view (fixes KeyError on original DF)
pick_id.change(
fn=show_example,
inputs=[state_pairs, pick_id],
outputs=[ref_disp, gen_disp, diff_disp],
)
download_btn.click(
fn=_export_results_csv,
inputs=[state_result],
outputs=download_btn, # path returned; Gradio serves it
)
return tab
|