Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
from transformers import AutoTokenizer, MT5ForConditionalGeneration
|
| 2 |
from transformers import T5Tokenizer
|
| 3 |
import streamlit as st
|
|
@@ -8,63 +9,6 @@ from datasets import Dataset, DatasetDict
|
|
| 8 |
from transformers import Trainer, TrainingArguments
|
| 9 |
|
| 10 |
|
| 11 |
-
tokenizer = T5Tokenizer.from_pretrained('google/mt5-base')
|
| 12 |
-
model = MT5ForConditionalGeneration.from_pretrained("google/mt5-base")
|
| 13 |
-
#st.write(model)
|
| 14 |
-
|
| 15 |
-
df = pd.read_csv('proverbs.csv')
|
| 16 |
-
df
|
| 17 |
-
dataset = Dataset.from_pandas(df)
|
| 18 |
-
|
| 19 |
-
def preprocess_function(examples):
|
| 20 |
-
inputs = examples['Proverb']
|
| 21 |
-
targets = examples['Meaning']
|
| 22 |
-
model_inputs = tokenizer(inputs, max_length=128, truncation=True, padding="max_length")
|
| 23 |
-
with tokenizer.as_target_tokenizer():
|
| 24 |
-
labels = tokenizer(targets, max_length=128, truncation=True, padding="max_length")
|
| 25 |
-
model_inputs["labels"] = labels["input_ids"]
|
| 26 |
-
return model_inputs
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
tokenized_dataset = dataset.map(preprocess_function, batched=True)
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
dataset_split = tokenized_dataset.train_test_split(test_size=0.2)
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
train_dataset = dataset_split['train']
|
| 36 |
-
test_dataset = dataset_split['test']
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
print(f"Training dataset size: {len(train_dataset)}")
|
| 40 |
-
print(f"Testing dataset size: {len(test_dataset)}")
|
| 41 |
-
|
| 42 |
-
training_args = TrainingArguments(
|
| 43 |
-
output_dir="./results",
|
| 44 |
-
evaluation_strategy="epoch",
|
| 45 |
-
learning_rate=2e-5,
|
| 46 |
-
per_device_train_batch_size=4,
|
| 47 |
-
per_device_eval_batch_size=4,
|
| 48 |
-
num_train_epochs=3,
|
| 49 |
-
weight_decay=0.01,
|
| 50 |
-
save_total_limit=2,
|
| 51 |
-
save_steps=500,
|
| 52 |
-
)
|
| 53 |
-
|
| 54 |
-
# Initialize Trainer
|
| 55 |
-
trainer = Trainer(
|
| 56 |
-
model=model,
|
| 57 |
-
args=training_args,
|
| 58 |
-
train_dataset=tokenized_dataset,
|
| 59 |
-
eval_dataset=tokenized_dataset, # Typically you'd have a separate eval dataset
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
# Fine-tune the model
|
| 63 |
-
trainer.train()
|
| 64 |
-
|
| 65 |
-
model.save_pretrained("./fine-tuned-mt5-marathi-proverbs")
|
| 66 |
-
tokenizer.save_pretrained("./fine-tuned-mt5-marathi-proverbs")
|
| 67 |
-
|
| 68 |
prompt = st.text_input("Enter your proverb: ")
|
| 69 |
|
| 70 |
# Tokenize the input prompt
|
|
|
|
| 1 |
+
import modelrun.py
|
| 2 |
from transformers import AutoTokenizer, MT5ForConditionalGeneration
|
| 3 |
from transformers import T5Tokenizer
|
| 4 |
import streamlit as st
|
|
|
|
| 9 |
from transformers import Trainer, TrainingArguments
|
| 10 |
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
prompt = st.text_input("Enter your proverb: ")
|
| 13 |
|
| 14 |
# Tokenize the input prompt
|