Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,8 +3,6 @@ import numpy as np
|
|
| 3 |
import random
|
| 4 |
from diffusers import DiffusionPipeline
|
| 5 |
import torch
|
| 6 |
-
from PIL import Image, ImageDraw, ImageFont
|
| 7 |
-
|
| 8 |
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
|
|
@@ -27,39 +25,20 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
| 27 |
|
| 28 |
if randomize_seed:
|
| 29 |
seed = random.randint(0, MAX_SEED)
|
| 30 |
-
|
| 31 |
generator = torch.Generator().manual_seed(seed)
|
| 32 |
-
|
| 33 |
image = pipe(
|
| 34 |
-
prompt=style_prompt,
|
| 35 |
-
negative_prompt=negative_prompt,
|
| 36 |
-
guidance_scale=guidance_scale,
|
| 37 |
-
num_inference_steps=num_inference_steps,
|
| 38 |
-
width=width,
|
| 39 |
-
height=height,
|
| 40 |
-
generator=generator
|
| 41 |
-
).images[0]
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
image = (255 * np.clip(image, 0, 1)).astype(np.uint8)
|
| 45 |
-
|
| 46 |
-
# Convert the image to PIL format for overlaying the watermark
|
| 47 |
-
pil_image = Image.fromarray(image)
|
| 48 |
-
|
| 49 |
-
# Add watermark
|
| 50 |
-
watermark_text = "Bibou.jpeg"
|
| 51 |
-
font = ImageFont.truetype("arial.ttf", size=30) # Adjust font and size as needed
|
| 52 |
-
draw = ImageDraw.Draw(pil_image)
|
| 53 |
-
text_width, text_height = draw.textsize(watermark_text, font=font)
|
| 54 |
-
margin = 10
|
| 55 |
-
opacity = 0.6
|
| 56 |
-
draw.text((pil_image.width - text_width - margin, pil_image.height - text_height - margin), watermark_text, font=font, fill=(255, 255, 255, int(255 * opacity)))
|
| 57 |
-
|
| 58 |
-
# Convert back to numpy array for Gradio display
|
| 59 |
-
watermarked_image = np.array(pil_image)
|
| 60 |
-
|
| 61 |
-
return watermarked_image
|
| 62 |
-
|
| 63 |
|
| 64 |
|
| 65 |
|
|
|
|
| 3 |
import random
|
| 4 |
from diffusers import DiffusionPipeline
|
| 5 |
import torch
|
|
|
|
|
|
|
| 6 |
|
| 7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
|
|
|
|
| 25 |
|
| 26 |
if randomize_seed:
|
| 27 |
seed = random.randint(0, MAX_SEED)
|
| 28 |
+
|
| 29 |
generator = torch.Generator().manual_seed(seed)
|
| 30 |
+
|
| 31 |
image = pipe(
|
| 32 |
+
prompt = style_prompt,
|
| 33 |
+
negative_prompt = negative_prompt,
|
| 34 |
+
guidance_scale = guidance_scale,
|
| 35 |
+
num_inference_steps = num_inference_steps,
|
| 36 |
+
width = width,
|
| 37 |
+
height = height,
|
| 38 |
+
generator = generator
|
| 39 |
+
).images[0]
|
| 40 |
+
|
| 41 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
|
| 44 |
|