File size: 17,181 Bytes
0e84104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
#!/usr/bin/env python
# coding=utf-8
"""
Lotus-2 Inference Script

Usage:
    python infer.py --pretrained_model_name_or_path <model_path> [other_args]

If --core_predictor_model_path, --lcm_model_path, or --detail_sharpener_model_path
are not provided, the script will automatically download the corresponding model
weights from the default HuggingFace repositories.
"""

import argparse
import logging
import os
from contextlib import nullcontext
from pathlib import Path

import numpy as np
import torch
import torch.utils.checkpoint
from peft import LoraConfig, set_peft_model_state_dict
from PIL import Image
from torch import nn
from tqdm.auto import tqdm

try:
    from huggingface_hub import snapshot_download
    HF_AVAILABLE = True
except ImportError:
    HF_AVAILABLE = False
    logging.warning("huggingface_hub not available. Model auto-download will not work.")

from diffusers import (
    FlowMatchEulerDiscreteScheduler,
    FluxTransformer2DModel,
)
from diffusers.utils import  convert_unet_state_dict_to_peft
from utils.image_utils import colorize_depth_map
from pipeline import Lotus2Pipeline
from utils.seed_all import seed_all

# Default HuggingFace repositories and model filenames
DEFAULT_CORE_PREDICTOR_REPO = "jingheya/Lotus-2"
DEFAULT_LCM_REPO = "jingheya/Lotus-2"
DEFAULT_DETAIL_SHARPENER_REPO = "jingheya/Lotus-2"

CORE_PREDICTOR_FILENAME = {
    "depth": "lotus-2_core_predictor_depth.safetensors",
    "normal": "lotus-2_core_predictor_normal.safetensors"
}

LCM_FILENAME = {
    "depth": "lotus-2_lcm_depth.safetensors",
    "normal": "lotus-2_lcm_normal.safetensors"
}

DETAIL_SHARPENER_FILENAME = {
    "depth": "lotus-2_detail_sharpener_depth.safetensors",
    "normal": "lotus-2_detail_sharpener_normal.safetensors"
}

def get_model_path(model_path, repo_id, filename):
    """
    Get the local path for a model. If model_path is None, download from HuggingFace.

    Args:
        model_path: Local path to model or None to download from HF
        repo_id: HuggingFace repository ID
        filename: Model filename in the repository

    Returns:
        Local path to the model file
    """
    if model_path is not None:
        return model_path

    if not HF_AVAILABLE:
        raise ImportError(
            f"huggingface_hub is required for auto-downloading {filename} model weights. "
            "Please install it with: pip install huggingface_hub"
        )

    logging.info(f"Downloading {filename} model weights from {repo_id}/{filename}")

    try:
        # Create cache directory if it doesn't exist
        cache_dir = os.path.expanduser("~/.cache/huggingface/hub")
        os.makedirs(cache_dir, exist_ok=True)

        # Download the entire repository and get the specific file
        repo_path = snapshot_download(
            repo_id=repo_id,
            cache_dir=cache_dir,
            local_files_only=False,
        )

        # Construct the full path to the specific file
        full_path = os.path.join(repo_path, filename)

        if not os.path.exists(full_path):
            # Try to find the file in the repo
            for root, dirs, files in os.walk(repo_path):
                if filename in files:
                    full_path = os.path.join(root, filename)
                    break
            else:
                raise FileNotFoundError(f"Could not find {filename} in the downloaded repository")

        logging.info(f"Successfully downloaded {filename} model to: {full_path}")
        return full_path

    except Exception as e:
        raise RuntimeError(f"Failed to download {filename} model from {repo_id}: {str(e)}")


# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
# check_min_version("0.33.0.dev0")


class Local_Continuity_Module(nn.Module):
    def __init__(self, num_channels):
        super().__init__()
        self.lcm = nn.Sequential(
            nn.Conv2d(num_channels, num_channels * 2, kernel_size=3, padding=1),
            nn.GELU(),
            nn.Conv2d(num_channels * 2, num_channels, kernel_size=3, padding=1),
        )

    def forward(self, x):
        lcm_dtype = next(self.lcm.parameters()).dtype
        if x.dtype != lcm_dtype:
            x = x.to(dtype=lcm_dtype)
        return x + self.lcm(x)

def parse_args(input_args=None):
    parser = argparse.ArgumentParser(description="Run Lotus-2.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--core_predictor_model_path",
        type=str,
        default=None,
        help="Path to core predictor model weights",
    )
    parser.add_argument(
        "--lcm_model_path",
        type=str,
        default=None,
        help="Path to local continuity module model weights",
    )
    parser.add_argument(
        "--detail_sharpener_model_path",
        type=str,
        default=None,
        help="Path to detail sharpener model weights",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
    )
    parser.add_argument(
        "--process_res",
        type=int,
        default=768,
        help="The resolution for processing the images.",
    )
    parser.add_argument(
        "--num_inference_steps",
        type=int,
        default=10,
        help="Number of timesteps to infer the model.",
    )
    parser.add_argument(
        "--input_dir",
        type=str,
        default=None,
        help="The directory where the input images are stored.",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="flux-dreambooth-lora",
        help="The output directory where the model predictions will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="Random seed.")
    parser.add_argument(
        "--task_name",
        type=str,
        default="depth", # "normal"
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    
    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

    return args

def process_single_image(image_path, pipeline, task_name, device, 
                         num_inference_steps, process_res=768):
    image = Image.open(image_path).convert("RGB")
    image_np = np.array(image).astype(np.float32)
    image_ts = torch.tensor(image_np).permute(2,0,1).unsqueeze(0)
    image_ts = image_ts / 127.5 - 1.0 
    image_ts = image_ts.to(device)

    prediction = pipeline(
        rgb_in=image_ts, 
        prompt='', 
        num_inference_steps=num_inference_steps,
        output_type='np',
        process_res=process_res,
        ).images[0]
    
    if task_name == "depth":
        output_npy = prediction.mean(axis=-1)
        output_vis = colorize_depth_map(output_npy, reverse_color=True)
    elif task_name == "normal":
        output_npy = prediction
        output_vis = Image.fromarray((output_npy * 255).astype(np.uint8))
    else:
        raise ValueError(f"Invalid task name: {task_name}")
        
    return image, output_vis, output_npy

def load_lora_and_lcm_weights(transformer, core_predictor_model_path, lcm_model_path, detail_sharpener_model_path, task_name):
    lora_rank = 128 if task_name == 'depth' else 256
    device = transformer.device
    weight_dtype = transformer.dtype

    target_lora_modules = [
        "attn.to_k",
        "attn.to_q",
        "attn.to_v",
        "attn.to_out.0",
        "attn.add_k_proj",
        "attn.add_q_proj",
        "attn.add_v_proj",
        "attn.to_add_out",
        "ff.net.0.proj",
        "ff.net.2",
        "ff_context.net.0.proj",
        "ff_context.net.2",
    ]

    # Auto-download models if paths are None
    core_predictor_model_path = get_model_path(
        core_predictor_model_path,
        DEFAULT_CORE_PREDICTOR_REPO,
        CORE_PREDICTOR_FILENAME[task_name]
    )

    lcm_model_path = get_model_path(
        lcm_model_path,
        DEFAULT_LCM_REPO,
        LCM_FILENAME[task_name]
    )

    detail_sharpener_model_path = get_model_path(
        detail_sharpener_model_path,
        DEFAULT_DETAIL_SHARPENER_REPO,
        DETAIL_SHARPENER_FILENAME[task_name]
    )

    # load lora weights for core predictor
    core_transformer_lora_config = LoraConfig(
        r=lora_rank,
        lora_alpha=lora_rank,
        init_lora_weights="gaussian",
        target_modules=target_lora_modules,
    )
    transformer.add_adapter(core_transformer_lora_config, adapter_name="core_predictor")

    core_lora_state_dict = Lotus2Pipeline.lora_state_dict(core_predictor_model_path)
    core_transformer_state_dict = {
        f'{k.replace("transformer.", "")}': v for k, v in core_lora_state_dict.items() if k.startswith("transformer.")
    }
    core_transformer_state_dict = convert_unet_state_dict_to_peft(core_transformer_state_dict)
    incompatible_keys = set_peft_model_state_dict(transformer, core_transformer_state_dict, adapter_name="core_predictor")
    if incompatible_keys is not None:
        # check only for unexpected keys
        unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
        if unexpected_keys:
            logging.warning(
                f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
                f" {unexpected_keys}. "
            )

    for name, param in transformer.named_parameters():
        if "core_predictor" in name:
            param.requires_grad = False
    # transformer.to(device=device, dtype=weight_dtype)
    logging.info(f"Successfully loaded lora weights for [core predictor].")

    # stage1 lcm weights
    local_continuity_module = Local_Continuity_Module(transformer.config.in_channels//4)
    lcm_state_dict = torch.load(lcm_model_path, map_location="cpu", weights_only=True)
    local_continuity_module.load_state_dict(lcm_state_dict)
    local_continuity_module.requires_grad_(False)
    local_continuity_module.to(device=device, dtype=weight_dtype)
    logging.info(f"Successfully loaded weights for [local continuity module (LCM)].")

    # stage2 lora weights (detail sharpener)
    sharpener_transformer_lora_config = LoraConfig(
        r=lora_rank,
        lora_alpha=lora_rank,
        init_lora_weights="gaussian",
        target_modules=target_lora_modules,
    )
    transformer.add_adapter(sharpener_transformer_lora_config, adapter_name="detail_sharpener")

    sharpener_lora_state_dict = Lotus2Pipeline.lora_state_dict(detail_sharpener_model_path)
    sharpener_transformer_state_dict = {
        f'{k.replace("transformer.", "")}': v for k, v in sharpener_lora_state_dict.items() if k.startswith("transformer.")
    }
    sharpener_transformer_state_dict = convert_unet_state_dict_to_peft(sharpener_transformer_state_dict)
    incompatible_keys = set_peft_model_state_dict(transformer, sharpener_transformer_state_dict, adapter_name="detail_sharpener")
    if incompatible_keys is not None:
        # check only for unexpected keys
        unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
        if unexpected_keys:
            logging.warning(
                f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
                f" {unexpected_keys}. "
            )

    # freeze the stage2 lora
    for name, param in transformer.named_parameters():
        if "detail_sharpener" in name:
            param.requires_grad = False
    # transformer.to(device=device, dtype=weight_dtype)
    logging.info(f"Successfully loaded lora weights for [detail sharpener].")

    return transformer, local_continuity_module

def main(args):
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logging.info("Run Lotus-2! ")

    # -------------------- Preparation --------------------
    # Check if model paths are provided, if not, they will be auto-downloaded from HuggingFace
    if args.core_predictor_model_path is None or args.lcm_model_path is None or args.detail_sharpener_model_path is None:
        if HF_AVAILABLE:
            logging.info("Some model paths are not provided. Model weights will be automatically downloaded from HuggingFace.")
            logging.info(f"Core predictor repo: {DEFAULT_CORE_PREDICTOR_REPO}")
            logging.info(f"LCM repo: {DEFAULT_LCM_REPO}")
            logging.info(f"Detail sharpener repo: {DEFAULT_DETAIL_SHARPENER_REPO}")
        else:
            logging.warning("Some model paths are not provided and huggingface_hub is not available.")
            logging.warning("Please install huggingface_hub: pip install huggingface_hub")
            logging.warning("Or provide local paths for all model weights.")

    # Random seed
    if args.seed is not None:
        seed_all(args.seed)

    # Output directories
    os.makedirs(args.output_dir, exist_ok=True)

    output_dir_vis = os.path.join(args.output_dir, f'{args.task_name}_vis')
    output_dir_npy = os.path.join(args.output_dir, f'{args.task_name}_npy')
    if not os.path.exists(output_dir_vis): os.makedirs(output_dir_vis)
    if not os.path.exists(output_dir_npy): os.makedirs(output_dir_npy)

    logging.info(f"Output dir = {args.output_dir}")

    # Mixed precision
    if args.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif args.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16
    else:
        weight_dtype = torch.float32  
    logging.info(f"Running with {weight_dtype} precision.")

    # Device
    if torch.cuda.is_available():
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")
        logging.warning("CUDA is not available. Running on CPU will be slow.")
    logging.info(f"Device = {device}")

    # -------------------- Data --------------------
    input_dir = Path(args.input_dir)
    test_images = list(input_dir.rglob('*.png')) + list(input_dir.rglob('*.jpg'))
    test_images = sorted(test_images)
    logging.info(f'==> There are {len(test_images)} images for validation.')

    # -------------------- Load scheduler and models --------------------
    # scheduler
    noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="scheduler", num_train_timesteps=10
    )
    # transformer
    transformer = FluxTransformer2DModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="transformer", revision=args.revision, variant=args.variant
    )
    transformer.requires_grad_(False)
    transformer.to(device=device, dtype=weight_dtype)
    
    # load weights
    transformer, local_continuity_module = load_lora_and_lcm_weights(transformer, 
                                            args.core_predictor_model_path, 
                                            args.lcm_model_path,
                                            args.detail_sharpener_model_path,
                                            args.task_name
                                            )

    # -------------------- Pipeline --------------------
    pipeline = Lotus2Pipeline.from_pretrained(
        args.pretrained_model_name_or_path,
        scheduler=noise_scheduler,
        transformer=transformer,
        revision=args.revision,
        variant=args.variant,
        torch_dtype=weight_dtype,
    )
    pipeline.local_continuity_module = local_continuity_module
    pipeline = pipeline.to(device)
    
    # -------------------- Run inference! --------------------
    pipeline.set_progress_bar_config(disable=True)

    with nullcontext():
        for image_path in tqdm(test_images):
            # print("\n",image_path)
            _, output_vis, output_npy = process_single_image(
                image_path, pipeline, 
                task_name=args.task_name,
                device=device,
                num_inference_steps=args.num_inference_steps,
                process_res=args.process_res
            )
            
            output_vis.save(os.path.join(output_dir_vis, f'{image_path.stem}.png'))
            np.save(os.path.join(output_dir_npy, f'{image_path.stem}.npy'), output_npy)

if __name__ == "__main__":
    args = parse_args()
    main(args)