File size: 19,969 Bytes
0e84104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
from PIL import Image
import matplotlib
import numpy as np
from typing import List
import csv
import cv2

from PIL import Image

import torch
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize

def numpy_to_pil(images: np.ndarray) -> List[Image.Image]:
    r"""
    Convert a numpy image or a batch of images to a PIL image.

    Args:
        images (`np.ndarray`):
            The image array to convert to PIL format.

    Returns:
        `List[PIL.Image.Image]`:
            A list of PIL images.
    """
    if images.ndim == 3:
        images = images[None, ...]
    images = (images * 255).round().astype("uint8")
    if images.shape[-1] == 1:
        # special case for grayscale (single channel) images
        pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
    else:
        pil_images = [Image.fromarray(image) for image in images]

    return pil_images

def resize_output(image, target_size):
    """
    Resize output image to target size
    Args:
        image: Image in PIL.Image, numpy.array or torch.tensor format
        target_size: tuple, target size (H, W)
    Returns:
        Resized image in original format
    """
    if isinstance(image, list):
        return [resize_output(img, target_size) for img in image]
    
    if isinstance(image, Image.Image):
        return image.resize(target_size[::-1], Image.BILINEAR)
    elif isinstance(image, np.ndarray):
        # Handle numpy array with shape (1, H, W, 3)
        if image.ndim == 4:
            resized = np.stack([cv2.resize(img, target_size[::-1]) for img in image])
            return resized
        else:
            return cv2.resize(image, target_size[::-1])
    elif isinstance(image, torch.Tensor):
        # Handle tensor with shape (1, 3, H, W)
        if image.dim() == 4:
            return torch.nn.functional.interpolate(
                image,
                size=target_size,
                mode='bilinear',
                align_corners=False
            )
        else:
            return torch.nn.functional.interpolate(
                image.unsqueeze(0),
                size=target_size, 
                mode='bilinear',
                align_corners=False
            ).squeeze(0)
    else:
        raise ValueError(f"Unsupported image format: {type(image)}")

def resize_image(image, target_size):
    """
    Resize output image to target size
    Args:
        image: Image in PIL.Image, numpy.array or torch.tensor format
        target_size: tuple, target size (H, W)
    Returns:
        Resized image in original format
    """
    if isinstance(image, list):
        return [resize_image(img, target_size) for img in image]
    
    if isinstance(image, Image.Image):
        return image.resize(target_size[::-1], Image.BILINEAR)
    elif isinstance(image, np.ndarray):
        # Handle numpy array with shape (1, H, W, 3)
        if image.ndim == 4:
            resized = np.stack([cv2.resize(img, target_size[::-1]) for img in image])
            return resized
        else:
            return cv2.resize(image, target_size[::-1])
    elif isinstance(image, torch.Tensor):
        # Handle tensor with shape (1, 3, H, W)
        if image.dim() == 4:
            return torch.nn.functional.interpolate(
                image,
                size=target_size,
                mode='bilinear',
                align_corners=False
            )
        else:
            return torch.nn.functional.interpolate(
                image.unsqueeze(0),
                size=target_size, 
                mode='bilinear',
                align_corners=False
            ).squeeze(0)
    else:
        raise ValueError(f"Unsupported image format: {type(image)}")

def resize_image_first(image_tensor, process_res=None):
    if process_res:
        max_edge = max(image_tensor.shape[2], image_tensor.shape[3])
        if max_edge > process_res:
            scale = process_res / max_edge
            new_height = int(image_tensor.shape[2] * scale)
            new_width = int(image_tensor.shape[3] * scale)
            image_tensor = resize_image(image_tensor, (new_height, new_width))
    
    image_tensor = resize_to_multiple_of_16(image_tensor)
    
    return image_tensor


def smooth_image(image, method='gaussian', kernel_size=31, sigma=15.0, bilateral_d=9, bilateral_color=75, bilateral_space=75):
    """
    应用多种平滑方法来消除图像中的网格伪影
    
    Args:
        image: PIL.Image, numpy.array 或 torch.tensor 格式的图像
        method: 平滑方法,可选 'gaussian'(高斯模糊), 'bilateral'(双边滤波), 'median'(中值滤波), 
                'guided'(引导滤波), 'strong'(结合多种滤波的强力平滑)
        kernel_size: 高斯和中值滤波的核大小,默认为31,应为奇数
        sigma: 高斯滤波的标准差,默认为15.0
        bilateral_d: 双边滤波的直径,默认为9
        bilateral_color: 双边滤波的颜色空间标准差,默认为75
        bilateral_space: 双边滤波的坐标空间标准差,默认为75
        
    Returns:
        平滑后的图像,保持原始格式
    """
    if isinstance(image, list):
        return [smooth_image(img, method, kernel_size, sigma, bilateral_d, bilateral_color, bilateral_space) for img in image]
    
    # 确保kernel_size是奇数
    if kernel_size % 2 == 0:
        kernel_size += 1
    
    # 转换为numpy数组进行处理
    is_pil = isinstance(image, Image.Image)
    is_tensor = isinstance(image, torch.Tensor)
    
    if is_pil:
        img_array = np.array(image)
    elif is_tensor:
        device = image.device
        if image.dim() == 4:  # (B, C, H, W)
            batch_size, channels, height, width = image.shape
            img_array = image.permute(0, 2, 3, 1).cpu().numpy()  # (B, H, W, C)
        else:  # (C, H, W)
            img_array = image.permute(1, 2, 0).cpu().numpy()  # (H, W, C)
    else:
        img_array = image
        
    # 保存原始数据类型
    original_dtype = img_array.dtype
    
    # 应用选定的平滑方法
    if method == 'gaussian':
        # 标准高斯模糊,适合轻微平滑
        if img_array.ndim == 4:
            smoothed = np.stack([cv2.GaussianBlur(img, (kernel_size, kernel_size), sigma) for img in img_array])
        else:
            smoothed = cv2.GaussianBlur(img_array, (kernel_size, kernel_size), sigma)
    
    elif method == 'bilateral':
        # 双边滤波,保持边缘的同时平滑平坦区域
        if img_array.ndim == 4:
            # 确保图像是8位类型
            imgs_uint8 = [img.astype(np.uint8) if img.dtype != np.uint8 else img for img in img_array]
            smoothed = np.stack([cv2.bilateralFilter(img, bilateral_d, bilateral_color, bilateral_space) for img in imgs_uint8])
            # 转回原始类型
            if original_dtype != np.uint8:
                smoothed = smoothed.astype(original_dtype)
        else:
            # 确保图像是8位类型
            img_uint8 = img_array.astype(np.uint8) if img_array.dtype != np.uint8 else img_array
            smoothed = cv2.bilateralFilter(img_uint8, bilateral_d, bilateral_color, bilateral_space)
            # 转回原始类型
            if original_dtype != np.uint8:
                smoothed = smoothed.astype(original_dtype)
    
    elif method == 'median':
        # 中值滤波,对于消除盐和胡椒噪声和小格子非常有效
        # 中值滤波要求输入为uint8或uint16
        if img_array.ndim == 4:
            # 转换为8位无符号整数并确保格式正确
            imgs_uint8 = []
            for img in img_array:
                # 对浮点图像进行缩放到0-255范围
                if img.dtype != np.uint8:
                    if img.max() <= 1.0:  # 检查是否是0-1范围的浮点数
                        img = (img * 255).astype(np.uint8)
                    else:
                        img = img.astype(np.uint8)
                imgs_uint8.append(img)
            
            smoothed = np.stack([cv2.medianBlur(img, kernel_size) for img in imgs_uint8])
            # 转回原始类型
            if original_dtype != np.uint8:
                if original_dtype == np.float32 or original_dtype == np.float64:
                    if img_array.max() <= 1.0:  # 检查原始数据是否在0-1范围
                        smoothed = smoothed.astype(float) / 255.0
            
        else:
            # 转换为8位无符号整数
            if img_array.dtype != np.uint8:
                if img_array.max() <= 1.0:  # 检查是否是0-1范围的浮点数
                    img_uint8 = (img_array * 255).astype(np.uint8)
                else:
                    img_uint8 = img_array.astype(np.uint8)
            else:
                img_uint8 = img_array
                
            smoothed = cv2.medianBlur(img_uint8, kernel_size)
            # 转回原始类型
            if original_dtype != np.uint8:
                if original_dtype == np.float32 or original_dtype == np.float64:
                    if img_array.max() <= 1.0:  # 检查原始数据是否在0-1范围
                        smoothed = smoothed.astype(float) / 255.0
                    else:
                        smoothed = smoothed.astype(original_dtype)
    
    elif method == 'guided':
        # 引导滤波,在保持边缘的同时平滑区域
        if img_array.ndim == 4:
            smoothed = np.stack([cv2.ximgproc.guidedFilter(
                guide=img, src=img, radius=kernel_size//2, eps=1e-6) for img in img_array])
        else:
            smoothed = cv2.ximgproc.guidedFilter(
                guide=img_array, src=img_array, radius=kernel_size//2, eps=1e-6)
    
    elif method == 'strong':
        # 强力平滑:先应用中值滤波去除尖锐噪点,然后用双边滤波保持边缘,最后用高斯进一步平滑
        if img_array.ndim == 4:
            # 转换为8位无符号整数
            imgs_uint8 = []
            for img in img_array:
                # 对浮点图像进行缩放到0-255范围
                if img.dtype != np.uint8:
                    if img.max() <= 1.0:  # 检查是否是0-1范围的浮点数
                        img = (img * 255).astype(np.uint8)
                    else:
                        img = img.astype(np.uint8)
                imgs_uint8.append(img)
            
            temp = np.stack([cv2.medianBlur(img, min(15, kernel_size)) for img in imgs_uint8])
            temp = np.stack([cv2.bilateralFilter(img, bilateral_d, bilateral_color, bilateral_space) for img in temp])
            smoothed = np.stack([cv2.GaussianBlur(img, (kernel_size, kernel_size), sigma) for img in temp])
            
            # 转回原始类型
            if original_dtype != np.uint8:
                if original_dtype == np.float32 or original_dtype == np.float64:
                    if img_array.max() <= 1.0:  # 检查原始数据是否在0-1范围
                        smoothed = smoothed.astype(float) / 255.0
                    else:
                        smoothed = smoothed.astype(original_dtype)
        else:
            # 转换为8位无符号整数
            if img_array.dtype != np.uint8:
                if img_array.max() <= 1.0:  # 检查是否是0-1范围的浮点数
                    img_uint8 = (img_array * 255).astype(np.uint8)
                else:
                    img_uint8 = img_array.astype(np.uint8)
            else:
                img_uint8 = img_array
                
            temp = cv2.medianBlur(img_uint8, min(15, kernel_size))
            temp = cv2.bilateralFilter(temp, bilateral_d, bilateral_color, bilateral_space)
            smoothed = cv2.GaussianBlur(temp, (kernel_size, kernel_size), sigma)
            
            # 转回原始类型
            if original_dtype != np.uint8:
                if original_dtype == np.float32 or original_dtype == np.float64:
                    if img_array.max() <= 1.0:  # 检查原始数据是否在0-1范围
                        smoothed = smoothed.astype(float) / 255.0
                    else:
                        smoothed = smoothed.astype(original_dtype)
    
    else:
        raise ValueError(f"不支持的平滑方法: {method},请选择 'gaussian', 'bilateral', 'median', 'guided' 或 'strong'")
    
    # 将结果转换回原始格式
    if is_pil:
        # 如果结果是浮点类型且值在0-1之间,需要先转换为0-255的uint8
        if smoothed.dtype == np.float32 or smoothed.dtype == np.float64:
            if smoothed.max() <= 1.0:
                smoothed = (smoothed * 255).astype(np.uint8)
        return Image.fromarray(smoothed.astype(np.uint8))
    elif is_tensor:
        if image.dim() == 4:
            return torch.from_numpy(smoothed).permute(0, 3, 1, 2).to(device)
        else:
            return torch.from_numpy(smoothed).permute(2, 0, 1).to(device)
    else:
        return smoothed

def resize_to_multiple_of_16(image_tensor):
    """
    Resize image tensor to make shorter side closest multiple of 16 while maintaining aspect ratio
    Args:
        image_tensor: Input tensor of shape (B, C, H, W)
    Returns:
        Resized tensor where shorter side is multiple of 16
    """
    # Calculate scale ratio based on shorter side to make it closest multiple of 16
    h, w = image_tensor.shape[2], image_tensor.shape[3]
    min_side = min(h, w)
    scale = (min_side // 16) * 16 / min_side
    
    # Calculate new height and width
    new_h = int(h * scale)
    new_w = int(w * scale)
    
    # Ensure both height and width are multiples of 16
    new_h = (new_h // 16) * 16  
    new_w = (new_w // 16) * 16

    # Resize image while maintaining aspect ratio
    resized_tensor = torch.nn.functional.interpolate(
        image_tensor,
        size=(new_h, new_w),
        mode='bilinear',
        align_corners=False
    )
    return resized_tensor

def load_color_list(csv_path):
    color_list = []
    with open(csv_path, newline='') as file:
        reader = csv.reader(file)
        
        next(reader)
    
        for row in reader:
            last_three = tuple(map(int, row[-3:]))
            color_list.append(last_three)

    color_list = [(0,0,0)] + color_list

    return color_list

def conver_rgb_to_semantic_map(image: Image, color_list: List):
    # Convert PIL Image to numpy array
    image_array = np.array(image)
    
    # Initialize an empty array for the indexed image
    indexed_image = np.zeros((image_array.shape[0], image_array.shape[1]), dtype=int)
    
    # Loop through each pixel in the image
    for i in range(image_array.shape[0]):
        for j in range(image_array.shape[1]):
            # Get the color of the current pixel
            pixel_color = tuple(image_array[i, j][:3])  # Exclude the alpha channel if present
            
            # Find the closest color from the color list and get its index
            # Here, the Euclidean distance is used to find the closest color
            distances = np.sqrt(np.sum((np.array(color_list) - np.array(pixel_color))**2, axis=1))
            closest_color_index = np.argmin(distances)
            
            # Set the index in the indexed image
            indexed_image[i, j] = closest_color_index
    
    indexed_image = indexed_image - 1 

    return indexed_image


def concatenate_images(*image_lists):
    # Ensure at least one image list is provided
    if not image_lists or not image_lists[0]:
        raise ValueError("At least one non-empty image list must be provided")
    
    # Determine the maximum width of any single row and the total height
    max_width = 0
    total_height = 0
    row_widths = []
    row_heights = []

    # Compute dimensions for each row
    for image_list in image_lists:
        if image_list:  # Ensure the list is not empty
            width = sum(img.width for img in image_list)
            height = max(img.height for img in image_list)
            max_width = max(max_width, width)
            total_height += height
            row_widths.append(width)
            row_heights.append(height)
    
    # Create a new image to concatenate everything into
    new_image = Image.new('RGB', (max_width, total_height))
    
    # Concatenate each row of images
    y_offset = 0
    for i, image_list in enumerate(image_lists):
        x_offset = 0
        for img in image_list:
            new_image.paste(img, (x_offset, y_offset))
            x_offset += img.width
        y_offset += row_heights[i]  # Move the offset down to the next row
    
    return new_image


# def concatenate_images(image_list1, image_list2):
#     # Ensure both image lists are not empty
#     if not image_list1 or not image_list2:
#         raise ValueError("Image lists cannot be empty")

#     # Get the width and height of the first image
#     width, height = image_list1[0].size

#     # Calculate the total width and height
#     total_width = max(len(image_list1), len(image_list2)) * width
#     total_height = 2 * height  # For two rows

#     # Create a new image to concatenate everything into
#     new_image = Image.new('RGB', (total_width, total_height))

#     # Concatenate the first row of images
#     x_offset = 0
#     for img in image_list1:
#         new_image.paste(img, (x_offset, 0))
#         x_offset += img.width

#     # Concatenate the second row of images
#     x_offset = 0
#     for img in image_list2:
#         new_image.paste(img, (x_offset, height))
#         x_offset += img.width

#     return new_image

def colorize_depth_map(depth, mask=None, reverse_color=False):
    cm = matplotlib.colormaps["Spectral"]
    # normalize
    depth = ((depth - depth.min()) / (depth.max() - depth.min()))
    # colorize
    if reverse_color:
        img_colored_np = cm(1 - depth, bytes=False)[:, :, 0:3]  # Invert the depth values before applying colormap
    else:
        img_colored_np = cm(depth, bytes=False)[:, :, 0:3] # (h,w,3)

    depth_colored = (img_colored_np * 255).astype(np.uint8) 
    if mask is not None:
        masked_image = np.zeros_like(depth_colored)
        masked_image[mask.numpy()] = depth_colored[mask.numpy()]
        depth_colored_img = Image.fromarray(masked_image)
    else:
        depth_colored_img = Image.fromarray(depth_colored)
    return depth_colored_img


def resize_max_res(
    img: torch.Tensor,
    max_edge_resolution: int,
    resample_method: InterpolationMode = InterpolationMode.BILINEAR,
) -> torch.Tensor:
    """
    Resize image to limit maximum edge length while keeping aspect ratio.

    Args:
        img (`torch.Tensor`):
            Image tensor to be resized. Expected shape: [B, C, H, W]
        max_edge_resolution (`int`):
            Maximum edge length (pixel).
        resample_method (`PIL.Image.Resampling`):
            Resampling method used to resize images.

    Returns:
        `torch.Tensor`: Resized image.
    """
    assert 4 == img.dim(), f"Invalid input shape {img.shape}"

    original_height, original_width = img.shape[-2:]
    downscale_factor = min(
        max_edge_resolution / original_width, max_edge_resolution / original_height
    )

    new_width = int(original_width * downscale_factor)
    new_height = int(original_height * downscale_factor)

    resized_img = resize(img, (new_height, new_width), resample_method, antialias=True)
    return resized_img


def get_tv_resample_method(method_str: str) -> InterpolationMode:
    resample_method_dict = {
        "bilinear": InterpolationMode.BILINEAR,
        "bicubic": InterpolationMode.BICUBIC,
        "nearest": InterpolationMode.NEAREST_EXACT,
        "nearest-exact": InterpolationMode.NEAREST_EXACT,
    }
    resample_method = resample_method_dict.get(method_str, None)
    if resample_method is None:
        raise ValueError(f"Unknown resampling method: {resample_method}")
    else:
        return resample_method