Spaces:
Runtime error
Runtime error
tomas.helmfridsson
commited on
Commit
Β·
fb858f0
1
Parent(s):
0f86498
updates for working
Browse files- app.py +57 -20
- requirements.txt +2 -2
app.py
CHANGED
|
@@ -7,65 +7,102 @@ from langchain_huggingface.embeddings import HuggingFaceEmbeddings
|
|
| 7 |
from langchain_huggingface.llms import HuggingFacePipeline
|
| 8 |
from langchain.chains import RetrievalQA
|
| 9 |
|
| 10 |
-
# ββ 1) Ladda & indexera PDF:er
|
| 11 |
docs, files = [], []
|
| 12 |
for fn in os.listdir("document"):
|
| 13 |
if fn.lower().endswith(".pdf"):
|
| 14 |
-
|
|
|
|
| 15 |
docs.extend(loader.load_and_split())
|
| 16 |
files.append(fn)
|
| 17 |
|
|
|
|
| 18 |
emb = HuggingFaceEmbeddings(model_name="KBLab/sentence-bert-swedish-cased")
|
| 19 |
vs = FAISS.from_documents(docs, emb)
|
| 20 |
|
| 21 |
-
# ββ
|
| 22 |
-
pipe = pipeline(
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
pipeline=pipe,
|
| 25 |
-
model_kwargs={"temperature": 0.3
|
| 26 |
)
|
| 27 |
-
qa
|
| 28 |
|
| 29 |
-
# ββ
|
| 30 |
def chat_fn(message, temperature, history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
history = history or []
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
return history, history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
if len(message) > 1000:
|
| 36 |
-
history.append(
|
|
|
|
|
|
|
|
|
|
| 37 |
return history, history
|
| 38 |
|
|
|
|
| 39 |
llm.model_kwargs["temperature"] = temperature
|
|
|
|
|
|
|
| 40 |
try:
|
| 41 |
-
|
|
|
|
| 42 |
except Exception as e:
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
| 45 |
return history, history
|
| 46 |
|
| 47 |
-
# ββ
|
| 48 |
with gr.Blocks() as demo:
|
| 49 |
gr.Markdown("## π Dokumentassistent (Svenska)")
|
| 50 |
-
|
| 51 |
gr.Markdown(
|
| 52 |
"**β
Laddade PDF-filer:**\n\n" +
|
| 53 |
"\n".join(f"- {f}" for f in files)
|
| 54 |
)
|
| 55 |
|
| 56 |
with gr.Row():
|
| 57 |
-
txt = gr.Textbox(
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
send = gr.Button("Skicka")
|
| 60 |
|
| 61 |
-
#
|
| 62 |
chat_state = gr.State([])
|
| 63 |
chatbot = gr.Chatbot(value=[], type="messages")
|
| 64 |
|
|
|
|
| 65 |
send.click(
|
| 66 |
fn=chat_fn,
|
| 67 |
inputs=[txt, temp, chat_state],
|
| 68 |
outputs=[chatbot, chat_state]
|
| 69 |
)
|
| 70 |
|
| 71 |
-
|
|
|
|
|
|
|
|
|
| 7 |
from langchain_huggingface.llms import HuggingFacePipeline
|
| 8 |
from langchain.chains import RetrievalQA
|
| 9 |
|
| 10 |
+
# ββ 1) Ladda & indexera alla PDF:er i mappen "document/" βββββββββββββββββββββ
|
| 11 |
docs, files = [], []
|
| 12 |
for fn in os.listdir("document"):
|
| 13 |
if fn.lower().endswith(".pdf"):
|
| 14 |
+
path = os.path.join("document", fn)
|
| 15 |
+
loader = PyPDFLoader(path)
|
| 16 |
docs.extend(loader.load_and_split())
|
| 17 |
files.append(fn)
|
| 18 |
|
| 19 |
+
# ββ 2) Skapa embedding + FAISS-vektorstore ββββββββββββββββββββββββββββββββββ
|
| 20 |
emb = HuggingFaceEmbeddings(model_name="KBLab/sentence-bert-swedish-cased")
|
| 21 |
vs = FAISS.from_documents(docs, emb)
|
| 22 |
|
| 23 |
+
# ββ 3) Initiera LLM och RetrievalQA-kedja ββββββββββββββββββββββββββββββββββ
|
| 24 |
+
pipe = pipeline(
|
| 25 |
+
"text-generation",
|
| 26 |
+
model="tiiuae/falcon-rw-1b",
|
| 27 |
+
device=-1,
|
| 28 |
+
max_new_tokens=128 # kortare svar fΓΆr snabbare inferens
|
| 29 |
+
)
|
| 30 |
+
llm = HuggingFacePipeline(
|
| 31 |
pipeline=pipe,
|
| 32 |
+
model_kwargs={"temperature": 0.3}
|
| 33 |
)
|
| 34 |
+
qa = RetrievalQA.from_chain_type(llm=llm, retriever=vs.as_retriever())
|
| 35 |
|
| 36 |
+
# ββ 4) Chat-funktion som anvΓ€nder "messages"-formatet ββββββββββββββββββββββββ
|
| 37 |
def chat_fn(message, temperature, history):
|
| 38 |
+
"""
|
| 39 |
+
- message: str, anvΓ€ndarens frΓ₯ga
|
| 40 |
+
- temperature: float, sampling-temperatur
|
| 41 |
+
- history: list of dicts, tidigare meddelanden i formatet {"role","content"}
|
| 42 |
+
"""
|
| 43 |
history = history or []
|
| 44 |
+
|
| 45 |
+
# Om anvΓ€ndaren inte skriver nΓ₯got
|
| 46 |
+
if not message.strip():
|
| 47 |
+
history.append({"role": "assistant", "content": "β οΈ Du mΓ₯ste skriva en frΓ₯ga."})
|
| 48 |
return history, history
|
| 49 |
+
|
| 50 |
+
# LΓ€gg in anvΓ€ndarens frΓ₯ga
|
| 51 |
+
history.append({"role": "user", "content": message})
|
| 52 |
+
|
| 53 |
+
# Kortare frΓ₯gor om de Γ€r fΓΆr lΓ₯nga
|
| 54 |
if len(message) > 1000:
|
| 55 |
+
history.append({
|
| 56 |
+
"role": "assistant",
|
| 57 |
+
"content": f"β οΈ FrΓ₯gan Γ€r fΓΆr lΓ₯ng ({len(message)} tecken)."
|
| 58 |
+
})
|
| 59 |
return history, history
|
| 60 |
|
| 61 |
+
# AnvΓ€nd vald temperatur
|
| 62 |
llm.model_kwargs["temperature"] = temperature
|
| 63 |
+
|
| 64 |
+
# KΓΆr RAG + fΓ₯ svar
|
| 65 |
try:
|
| 66 |
+
result = qa.invoke({"query": message})
|
| 67 |
+
svar = result["result"]
|
| 68 |
except Exception as e:
|
| 69 |
+
svar = f"β Ett fel uppstod vid bearbetning: {e}"
|
| 70 |
+
|
| 71 |
+
# LΓ€gg till svaret
|
| 72 |
+
history.append({"role": "assistant", "content": svar})
|
| 73 |
return history, history
|
| 74 |
|
| 75 |
+
# ββ 5) Bygg GradioβUI βββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 76 |
with gr.Blocks() as demo:
|
| 77 |
gr.Markdown("## π Dokumentassistent (Svenska)")
|
|
|
|
| 78 |
gr.Markdown(
|
| 79 |
"**β
Laddade PDF-filer:**\n\n" +
|
| 80 |
"\n".join(f"- {f}" for f in files)
|
| 81 |
)
|
| 82 |
|
| 83 |
with gr.Row():
|
| 84 |
+
txt = gr.Textbox(
|
| 85 |
+
lines=2,
|
| 86 |
+
label="Din frΓ₯ga:",
|
| 87 |
+
placeholder="Exempel: Vad sΓ€ger dokumentet om avsnittet 'Resultat'?"
|
| 88 |
+
)
|
| 89 |
+
temp = gr.Slider(
|
| 90 |
+
0.0, 1.0, value=0.3, step=0.05,
|
| 91 |
+
label="Temperatur"
|
| 92 |
+
)
|
| 93 |
send = gr.Button("Skicka")
|
| 94 |
|
| 95 |
+
# Intern state och chatbot-komponent som visar listor av dicts
|
| 96 |
chat_state = gr.State([])
|
| 97 |
chatbot = gr.Chatbot(value=[], type="messages")
|
| 98 |
|
| 99 |
+
# Bind knappen sΓ₯ att gradio genererar /api/predict-endpoint
|
| 100 |
send.click(
|
| 101 |
fn=chat_fn,
|
| 102 |
inputs=[txt, temp, chat_state],
|
| 103 |
outputs=[chatbot, chat_state]
|
| 104 |
)
|
| 105 |
|
| 106 |
+
# Starta appen
|
| 107 |
+
if __name__ == "__main__":
|
| 108 |
+
demo.launch()
|
requirements.txt
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
huggingface_hub==0.25.2
|
| 2 |
-
gradio
|
| 3 |
langchain[all]>=0.1.14
|
| 4 |
langchain-community>=0.0.19
|
| 5 |
langchain-huggingface>=0.0.6
|
|
@@ -8,6 +7,7 @@ sentence-transformers
|
|
| 8 |
faiss-cpu
|
| 9 |
pdfminer.six
|
| 10 |
pypdf
|
| 11 |
-
google-genai==1.5.0
|
| 12 |
pydantic==2.10.6
|
| 13 |
python-dotenv
|
|
|
|
|
|
| 1 |
huggingface_hub==0.25.2
|
|
|
|
| 2 |
langchain[all]>=0.1.14
|
| 3 |
langchain-community>=0.0.19
|
| 4 |
langchain-huggingface>=0.0.6
|
|
|
|
| 7 |
faiss-cpu
|
| 8 |
pdfminer.six
|
| 9 |
pypdf
|
| 10 |
+
#google-genai==1.5.0
|
| 11 |
pydantic==2.10.6
|
| 12 |
python-dotenv
|
| 13 |
+
gradio==5.6.0
|