File size: 9,533 Bytes
79372c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f93fc7
79372c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f93fc7
79372c8
7f93fc7
79372c8
6ebb615
b9c3c99
 
7f93fc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9c3c99
7f93fc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9c3c99
 
 
 
 
 
7f93fc7
 
 
 
 
 
 
b9c3c99
 
6ebb615
b9c3c99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import gradio as gr
import json
import os
import time
import random
import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import f1_score, precision_score, recall_score
from scipy.spatial.distance import cosine
import pickle
from pathlib import Path
from itertools import combinations

# Import the necessary functions from your existing code
from pan22_verif_evaluator import evaluate_all

# Implement the main logic functions (simplified versions)
def cosine_sim(a, b):
    return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))

def rescale(value, orig_min, orig_max, new_min, new_max):
    orig_span = orig_max - orig_min
    new_span = new_max - new_min
    try:
        scaled_value = float(value - orig_min) / float(orig_span)
    except ZeroDivisionError:
        orig_span += 1e-6
        scaled_value = float(value - orig_min) / float(orig_span)
    return new_min + (scaled_value * new_span)

def correct_scores(scores, p1, p2):
    for sc in scores:
        if sc <= p1:
            yield rescale(sc, 0, p1, 0, 0.49)
        elif p1 < sc < p2:
            yield 0.5
        else:
            yield rescale(sc, p2, 1, 0.51, 1)

# Main training function
def train_model(pairs_file, truths_file, vocab_size, ngram_size, num_iterations, dropout):
    gold = {}
    for line in open(truths_file):
        d = json.loads(line.strip())
        gold[d['id']] = int(d['same'])

    # truncation for development purposes
    cutoff = 0
    if cutoff:
        gold = dict(random.sample(gold.items(), cutoff))
        # print(len(gold))

    texts = []
    for line in open(pairs_file,encoding='utf8'):
        d = json.loads(line.strip())
        if d['id'] in gold:
            texts.extend(d['pair'])
    
    # Process the data and train the model
    vectorizer = TfidfVectorizer(max_features=vocab_size, analyzer='char',
                                 ngram_range=(ngram_size, ngram_size))
    vectorizer.fit(texts)

    if num_iterations:
        total_feats = len(vectorizer.get_feature_names_out())
        keep_feats = int(total_feats * dropout)

        rnd_feature_idxs = []
        for _ in range(num_iterations):
            rnd_feature_idxs.append(np.random.choice(total_feats,
                                                     keep_feats,
                                                     replace=False))
        rnd_feature_idxs = np.array(rnd_feature_idxs)
    
    similarities, labels = [], []
    for line in open(pairs_file,encoding='utf8'):
        d = json.loads(line.strip())
        if d['id'] in gold:
            x1, x2 = vectorizer.transform(d['pair']).toarray()
            if num_iterations:
                similarities_ = []
                for i in range(num_iterations):
                    similarities_.append(cosine_sim(x1[rnd_feature_idxs[i, :]],
                                                    x2[rnd_feature_idxs[i, :]]))
                similarities.append(np.mean(similarities_))
            else:
                similarities.append(cosine_sim(x1, x2))
            labels.append(gold[d['id']])

    similarities = np.array(similarities, dtype=np.float64)
    labels = np.array(labels, dtype=np.float64)
    print('-> grid search p1/p2:')
    step_size = 0.01
    thresholds = np.arange(0.01, 0.99, step_size)
    combs = [(p1, p2) for (p1, p2) in combinations(thresholds, 2) if p1 < p2]
    
    params = {}
    for p1, p2 in combs:
        corrected_scores = np.array(list(correct_scores(similarities, p1=p1, p2=p2)))
        score = evaluate_all(pred_y=corrected_scores, true_y=labels)
        params[(p1, p2)] = score['overall']
    opt_p1, opt_p2 = max(params, key=params.get)
    print('optimal p1/p2:', opt_p1, opt_p2)

    corrected_scores = np.array(list(correct_scores(similarities, p1=opt_p1, p2=opt_p2)))
    evaluation_result = evaluate_all(pred_y=corrected_scores, true_y=labels)
    print('optimal score:', evaluation_result)

    print('-> determining optimal threshold')
    scores = []
    for th in np.linspace(0.25, 0.75, 1000):
        adjusted = (corrected_scores >= th) * 1
        scores.append((th,
                       f1_score(labels, adjusted),
                       precision_score(labels, adjusted),
                       recall_score(labels, adjusted)))
    thresholds, f1s, precisions, recalls = zip(*scores)

    max_idx = np.array(f1s).argmax()
    max_f1 = f1s[max_idx]
    max_th = thresholds[max_idx]
    print(f'Dev results -> F1={max_f1} at th={max_th}')
    
    # Save the model
    model = {
        'vectorizer': vectorizer,
        'opt_p1': opt_p1,
        'opt_p2': opt_p2,
        'rnd_feature_idxs': rnd_feature_idxs if num_iterations else None,
        'evaluation_result': evaluation_result
    }

    pickle_path = os.path.join(os.getcwd(), 'model.pkl')
    with open(pickle_path, 'wb') as f:
        pickle.dump(model, f)
    
    return "Training complete. Model files saved.", opt_p1, opt_p2, evaluation_result, pickle_path
    

# Gradio interface
def gradio_interface(pairs_file, truths_file, vocab_size, ngram_size, num_iterations, dropout):
    if pairs_file is None or truths_file is None:
        return "Please upload both JSON files.", None, gr.Group(visible=False), None, None

    try:
        start_time = time.time()
        training_message, opt_p1, opt_p2, evaluation_result, pickle_path = train_model(
            pairs_file.name, truths_file.name, vocab_size, ngram_size, num_iterations, dropout
        )
        end_time = time.time()
        execution_time = end_time - start_time  # Calculate execution time
        # Create a DataFrame for display
        data = {
            'Metric': ['p1', 'p2', 'AUC', 'c@1', 'f_05_u', 'F1', 'Brier', 'Overall', 'Execution Time'],
            'Value': [
                opt_p1,
                opt_p2,
                evaluation_result['auc'],
                evaluation_result['c@1'],
                evaluation_result['f_05_u'],
                evaluation_result['F1'],
                evaluation_result['brier'],
                evaluation_result['overall'],
                round(execution_time, 2)
            ]
        }
        df = pd.DataFrame(data)
        
        return training_message, df, gr.Group(visible=True), pickle_path, pickle_path
    except Exception as e:
        return f"An error occurred: {str(e)}", None, gr.Group(visible=False), None, None

with gr.Blocks() as iface:
        gr.Markdown("# Character 4-grams Model")
        
        model_path = gr.State(None)

        with gr.Tab("Train"):
            gr.Markdown("Upload pairs.json and truths.json files, adjust parameters, then click 'Train' to train and evaluate the model.")
            with gr.Row():
                pairs_file = gr.File(label="Upload pairs.json")
                truths_file = gr.File(label="Upload truths.json")
            
            with gr.Row():
                vocab_size = gr.Slider(minimum=1000, maximum=50000, step=100, value=3000, label="Vocabulary Size")
                ngram_size = gr.Slider(minimum=2, maximum=6, step=1, value=4, label="N-gram Size")
                num_iterations = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Number of Iterations")
                dropout = gr.Slider(minimum=0.1, maximum=0.9, step=0.1, value=0.5, label="Dropout")
            
            submit_btn = gr.Button("Train")
            
            status_box = gr.Textbox(label="Status")
            
            with gr.Group(visible=False) as output_group:
                gr.Markdown("## Evaluation Metrics")
                output_table = gr.DataFrame()
                download_button = gr.File(label="Download Model")
        
        with gr.Tab('Test'):
            gr.Markdown("Enter two texts to compare and click 'Predict' to estimate their similarity.")
            text1 = gr.Textbox(label="Text 1")
            text2 = gr.Textbox(label="Text 2")
            predict_btn = gr.Button("Predict")
            similarity_output = gr.Textbox(label="Similarity Result")

        def test_model(text1, text2, model_path):
            if model_path is None:
                return "Please train the model first."
            
            model = pickle.load(open(model_path, 'rb'))
            vectorizer = model['vectorizer']
            opt_p1 = model['opt_p1']
            opt_p2 = model['opt_p2']
            num_iterations = model['rnd_feature_idxs'] is not None
            rnd_feature_idxs = model['rnd_feature_idxs']

            x1, x2 = vectorizer.transform([text1, text2]).toarray()
            if num_iterations:
                similarities_ = []
                for i in range(len(rnd_feature_idxs)):
                    similarities_.append(cosine_sim(x1[rnd_feature_idxs[i, :]], x2[rnd_feature_idxs[i, :]]))
                similarity = np.mean(similarities_)
            else:
                similarity = cosine_sim(x1, x2)

            similarity = np.array(list(correct_scores([similarity], p1=opt_p1, p2=opt_p2)))[0]
            return f"Similarity: {similarity:.4f}"
        
        
        
        submit_btn.click(
            gradio_interface,
            inputs=[pairs_file, truths_file, vocab_size, ngram_size, num_iterations, dropout],
            outputs=[status_box, output_table, output_group, download_button, model_path]
        )

        predict_btn.click(
            test_model,
            inputs=[text1, text2, model_path],
            outputs=[similarity_output]
        )

if __name__ == "__main__":
    iface.launch()