Upload 3 files
Browse files- pages/对话式文本检测工具.py +209 -0
- pages/文件式文本检测工具.py +247 -0
- requirements.txt +6 -0
pages/对话式文本检测工具.py
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import subprocess
|
| 4 |
+
import os
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from transformers import BertTokenizer
|
| 9 |
+
import appbuilder
|
| 10 |
+
from transformers import BertModel
|
| 11 |
+
#加载预训练模型
|
| 12 |
+
pretrained = BertModel.from_pretrained('hfl/chinese-macbert-base')
|
| 13 |
+
#需要移动到cuda上
|
| 14 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 15 |
+
pretrained.to(device)
|
| 16 |
+
#不训练,不需要计算梯度
|
| 17 |
+
for param in pretrained.parameters():
|
| 18 |
+
param.requires_grad_(False)
|
| 19 |
+
|
| 20 |
+
#多头注意力机制
|
| 21 |
+
class MultiHeadAttention(nn.Module):
|
| 22 |
+
def __init__(self, hidden_size, num_heads):
|
| 23 |
+
super(MultiHeadAttention, self).__init__()
|
| 24 |
+
# 确保隐藏层特征数能够被头数整除
|
| 25 |
+
assert hidden_size % num_heads == 0
|
| 26 |
+
self.hidden_size = hidden_size
|
| 27 |
+
self.num_heads = num_heads
|
| 28 |
+
self.head_dim = hidden_size // num_heads # 计算每个头的维度
|
| 29 |
+
# 定义线性层,用于对查询、键、值进行线性变换
|
| 30 |
+
self.linear_q = nn.Linear(hidden_size, hidden_size)
|
| 31 |
+
self.linear_k = nn.Linear(hidden_size, hidden_size)
|
| 32 |
+
self.linear_v = nn.Linear(hidden_size, hidden_size)
|
| 33 |
+
self.linear_out = nn.Linear(hidden_size, hidden_size) # 定义输出线性层,用于整合多头注意力后的输出
|
| 34 |
+
|
| 35 |
+
def forward(self, x):
|
| 36 |
+
batch_size, seq_len, _ = x.size()
|
| 37 |
+
# 对输入进行线性变换,并将其分割为多个头
|
| 38 |
+
q = self.linear_q(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 39 |
+
k = self.linear_k(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 40 |
+
v = self.linear_v(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 41 |
+
# 计算注意力分数
|
| 42 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float))
|
| 43 |
+
attn_weights = F.softmax(scores, dim=-1) # 计算注意力权重
|
| 44 |
+
# 根据注意力权重对值进行加权求和
|
| 45 |
+
context = torch.matmul(attn_weights, v).transpose(1, 2).contiguous().view(batch_size, seq_len, self.hidden_size)
|
| 46 |
+
out = self.linear_out(context) # 整合多头注意力的输出
|
| 47 |
+
return out
|
| 48 |
+
|
| 49 |
+
class Model(nn.Module):
|
| 50 |
+
def __init__(self):
|
| 51 |
+
super(Model, self).__init__()
|
| 52 |
+
self.fc1 = nn.Linear(768, 512) # 第一层全连接层
|
| 53 |
+
self.fc2 = nn.Linear(512, 256) # 第二层全连接层
|
| 54 |
+
self.fc3 = nn.Linear(256, 2) # 第三层全连接层
|
| 55 |
+
self.dropout = nn.Dropout(p=0.5)
|
| 56 |
+
self.bn1 = nn.BatchNorm1d(512)
|
| 57 |
+
self.bn2 = nn.BatchNorm1d(256)
|
| 58 |
+
self.activation = nn.ReLU()
|
| 59 |
+
self.multihead_attention = MultiHeadAttention(hidden_size=768, num_heads=8) # 多头注意力模块
|
| 60 |
+
|
| 61 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
| 62 |
+
out = pretrained(input_ids=input_ids,
|
| 63 |
+
attention_mask=attention_mask,
|
| 64 |
+
token_type_ids=token_type_ids).last_hidden_state
|
| 65 |
+
|
| 66 |
+
# 应用多头注意力机制
|
| 67 |
+
out = self.multihead_attention(out)
|
| 68 |
+
out = out[:, 0] # 提取[CLS]标记的输出
|
| 69 |
+
|
| 70 |
+
out = self.activation(self.bn1(self.fc1(out)))
|
| 71 |
+
out = self.dropout(out)
|
| 72 |
+
out = self.activation(self.bn2(self.fc2(out)))
|
| 73 |
+
out = self.dropout(out)
|
| 74 |
+
out = self.fc3(out)
|
| 75 |
+
out = out.softmax(dim=1)
|
| 76 |
+
return out
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def load_models_and_predict(text, device):
|
| 80 |
+
# 加载模型
|
| 81 |
+
MacBERT_base_CDialBias = torch.load('models\MacBERT-base-CDialBias.pth')
|
| 82 |
+
MacBERT_base_CDialBias.to(device)
|
| 83 |
+
MacBERT_base_COLD = torch.load('models\MacBERT-base-CDialBias.pth')
|
| 84 |
+
MacBERT_base_COLD.to(device)
|
| 85 |
+
|
| 86 |
+
# 获取密钥和ID
|
| 87 |
+
os.environ['APPBUILDER_TOKEN'] = "bce-v3/ALTAK-n2XgeA6FS3Q5E7Jab6UwE/850b44ebec64c4cad705986ab0b5e3df4b05d407"
|
| 88 |
+
app_id = "df881861-9fa6-40b6-b3bd-26df5f5d4b9a"
|
| 89 |
+
|
| 90 |
+
# 初始化agent实例
|
| 91 |
+
your_agent = appbuilder.AppBuilderClient(app_id)
|
| 92 |
+
|
| 93 |
+
# 创建会话id
|
| 94 |
+
conversation_id = your_agent.create_conversation()
|
| 95 |
+
|
| 96 |
+
# 加载字典和分词工具
|
| 97 |
+
tokenizer = BertTokenizer.from_pretrained('hfl/chinese-macbert-base')
|
| 98 |
+
|
| 99 |
+
# 对输入文本进行编码
|
| 100 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 101 |
+
|
| 102 |
+
# 将输入数据移动到相同的设备上
|
| 103 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 104 |
+
|
| 105 |
+
# 设置模型为评估模式
|
| 106 |
+
MacBERT_base_CDialBias.eval()
|
| 107 |
+
MacBERT_base_COLD.eval()
|
| 108 |
+
|
| 109 |
+
# 调用千帆api获取标签
|
| 110 |
+
msg = your_agent.run(conversation_id, text)
|
| 111 |
+
answer = msg.content.answer
|
| 112 |
+
|
| 113 |
+
# 进行预测
|
| 114 |
+
with torch.no_grad():
|
| 115 |
+
out1 = MacBERT_base_CDialBias(**inputs)
|
| 116 |
+
with torch.no_grad():
|
| 117 |
+
out2 = MacBERT_base_COLD(**inputs)
|
| 118 |
+
|
| 119 |
+
out1 = torch.argmax(out1, dim=1).item()
|
| 120 |
+
out2 = torch.argmax(out2, dim=1).item()
|
| 121 |
+
out3 = answer[0]
|
| 122 |
+
|
| 123 |
+
# 分析结果
|
| 124 |
+
if out3 == "1":
|
| 125 |
+
if out1 == out2 == out3 == 1:
|
| 126 |
+
result = "这句话具有攻击性和社会偏见"
|
| 127 |
+
elif out1 == 0 and out2 == 1:
|
| 128 |
+
result = "这句话具有攻击性,但无社会偏见"
|
| 129 |
+
elif out1 == 1 and out2 == 0:
|
| 130 |
+
result = "这句话不具有攻击性,但具有社会偏见"
|
| 131 |
+
else:
|
| 132 |
+
result = "这句话具有攻击性"
|
| 133 |
+
elif out3 == "0":
|
| 134 |
+
if out1 == out2 == out3 == 0:
|
| 135 |
+
result = "这句话不具有攻击性和社会偏见"
|
| 136 |
+
elif out1 == 0 and out2 == 1:
|
| 137 |
+
result = "这句话具有攻击性,但无社会偏见"
|
| 138 |
+
elif out1 == 1 and out2 == 0:
|
| 139 |
+
result = "这句话不具有攻击性,但具有社会偏见"
|
| 140 |
+
else:
|
| 141 |
+
result = "这句话不具有攻击性"
|
| 142 |
+
return result
|
| 143 |
+
def run_command(command):
|
| 144 |
+
try:
|
| 145 |
+
subprocess.run(command, shell=True, check=True)
|
| 146 |
+
except subprocess.CalledProcessError as e:
|
| 147 |
+
print(f"Error executing command: {e}")
|
| 148 |
+
|
| 149 |
+
#创建网页
|
| 150 |
+
st.title("☁礼貌用语检测器")
|
| 151 |
+
|
| 152 |
+
with st.sidebar:
|
| 153 |
+
# 初始化session state
|
| 154 |
+
if 'logged_in' not in st.session_state:
|
| 155 |
+
st.session_state.logged_in = False
|
| 156 |
+
|
| 157 |
+
# 用户名和密码输入
|
| 158 |
+
username = st.sidebar.text_input('用户名')
|
| 159 |
+
password = st.sidebar.text_input('密码', type='password')
|
| 160 |
+
|
| 161 |
+
# 登录按钮
|
| 162 |
+
if st.sidebar.button('登录'):
|
| 163 |
+
# 这里可以添加验证逻辑,例如检查用户名和密码是否正确
|
| 164 |
+
if username == 'admin' and password == '12345':
|
| 165 |
+
st.session_state.logged_in = True
|
| 166 |
+
st.sidebar.success('登录成功!')
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
else:
|
| 170 |
+
st.error('用户名或密码错误,请重试。')
|
| 171 |
+
st.stop()
|
| 172 |
+
|
| 173 |
+
#清空消息
|
| 174 |
+
clear = st.button("清除")
|
| 175 |
+
if clear:
|
| 176 |
+
st.session_state.clear()
|
| 177 |
+
|
| 178 |
+
st.divider()
|
| 179 |
+
|
| 180 |
+
#输出内容
|
| 181 |
+
if "memory" not in st.session_state:
|
| 182 |
+
st.session_state['memory'] = []
|
| 183 |
+
st.session_state['message'] = [{"role": "ai",
|
| 184 |
+
"content": "你好!我是“礼貌用语检测器”。在这里,我能够帮助你检测中文语言中的攻击性和社会偏见内容,维护一个文明、和谐的交流环境。请告诉我你的需求,我会尽力提供帮助。"}]
|
| 185 |
+
|
| 186 |
+
for message in st.session_state['message']:
|
| 187 |
+
st.chat_message(message["role"]).write(message["content"])
|
| 188 |
+
|
| 189 |
+
#输入内容
|
| 190 |
+
text = st.chat_input()
|
| 191 |
+
|
| 192 |
+
#运行
|
| 193 |
+
if text and st.session_state.logged_in == True:
|
| 194 |
+
#将问题保存进message和memory
|
| 195 |
+
st.session_state["message"].append({"role": "human", "content": text})
|
| 196 |
+
st.session_state["memory"].append(text)
|
| 197 |
+
st.chat_message("human").write(text)
|
| 198 |
+
#得到回答
|
| 199 |
+
with st.spinner("AI正在思考中,请稍等..."):
|
| 200 |
+
result = load_models_and_predict(text, device)
|
| 201 |
+
|
| 202 |
+
#将回答保存进message和memory
|
| 203 |
+
st.session_state["message"].append({"role": "ai", "content": result})
|
| 204 |
+
st.session_state["memory"].append(result)
|
| 205 |
+
st.chat_message("ai").write(result)
|
| 206 |
+
|
| 207 |
+
elif text and st.session_state.logged_in == False:
|
| 208 |
+
st.error('请先登录!')
|
| 209 |
+
st.stop()
|
pages/文件式文本检测工具.py
ADDED
|
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import torch
|
| 4 |
+
import os
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from transformers import BertTokenizer
|
| 9 |
+
import appbuilder
|
| 10 |
+
from transformers import BertModel
|
| 11 |
+
#加载预训练模型
|
| 12 |
+
pretrained = BertModel.from_pretrained('hfl/chinese-macbert-base')
|
| 13 |
+
#需要移动到cuda上
|
| 14 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 15 |
+
pretrained.to(device)
|
| 16 |
+
#不训练,不需要计算梯度
|
| 17 |
+
for param in pretrained.parameters():
|
| 18 |
+
param.requires_grad_(False)
|
| 19 |
+
|
| 20 |
+
#多头注意力机制
|
| 21 |
+
class MultiHeadAttention(nn.Module):
|
| 22 |
+
def __init__(self, hidden_size, num_heads):
|
| 23 |
+
super(MultiHeadAttention, self).__init__()
|
| 24 |
+
# 确保隐藏层特征数能够被头数整除
|
| 25 |
+
assert hidden_size % num_heads == 0
|
| 26 |
+
self.hidden_size = hidden_size
|
| 27 |
+
self.num_heads = num_heads
|
| 28 |
+
self.head_dim = hidden_size // num_heads # 计算每个头的维度
|
| 29 |
+
# 定义线性层,用于对查询、键、值进行线性变换
|
| 30 |
+
self.linear_q = nn.Linear(hidden_size, hidden_size)
|
| 31 |
+
self.linear_k = nn.Linear(hidden_size, hidden_size)
|
| 32 |
+
self.linear_v = nn.Linear(hidden_size, hidden_size)
|
| 33 |
+
self.linear_out = nn.Linear(hidden_size, hidden_size) # 定义输出线性层,用于整合多头注意力后的输出
|
| 34 |
+
|
| 35 |
+
def forward(self, x):
|
| 36 |
+
batch_size, seq_len, _ = x.size()
|
| 37 |
+
# 对输入进行线性变换,并将其分割为多个头
|
| 38 |
+
q = self.linear_q(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 39 |
+
k = self.linear_k(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 40 |
+
v = self.linear_v(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 41 |
+
# 计算注意力分数
|
| 42 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float))
|
| 43 |
+
attn_weights = F.softmax(scores, dim=-1) # 计算注意力权重
|
| 44 |
+
# 根据注意力权重对值进行加权求和
|
| 45 |
+
context = torch.matmul(attn_weights, v).transpose(1, 2).contiguous().view(batch_size, seq_len, self.hidden_size)
|
| 46 |
+
out = self.linear_out(context) # 整合多头注意力的输出
|
| 47 |
+
return out
|
| 48 |
+
|
| 49 |
+
class Model(nn.Module):
|
| 50 |
+
def __init__(self):
|
| 51 |
+
super(Model, self).__init__()
|
| 52 |
+
self.fc1 = nn.Linear(768, 512) # 第一层全连接层
|
| 53 |
+
self.fc2 = nn.Linear(512, 256) # 第二层全连接层
|
| 54 |
+
self.fc3 = nn.Linear(256, 2) # 第三层全连接层
|
| 55 |
+
self.dropout = nn.Dropout(p=0.5)
|
| 56 |
+
self.bn1 = nn.BatchNorm1d(512)
|
| 57 |
+
self.bn2 = nn.BatchNorm1d(256)
|
| 58 |
+
self.activation = nn.ReLU()
|
| 59 |
+
self.multihead_attention = MultiHeadAttention(hidden_size=768, num_heads=8) # 多头注意力模块
|
| 60 |
+
|
| 61 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
| 62 |
+
out = pretrained(input_ids=input_ids,
|
| 63 |
+
attention_mask=attention_mask,
|
| 64 |
+
token_type_ids=token_type_ids).last_hidden_state
|
| 65 |
+
|
| 66 |
+
# 应用多头注意力机制
|
| 67 |
+
out = self.multihead_attention(out)
|
| 68 |
+
out = out[:, 0] # 提取[CLS]标记的输出
|
| 69 |
+
|
| 70 |
+
out = self.activation(self.bn1(self.fc1(out)))
|
| 71 |
+
out = self.dropout(out)
|
| 72 |
+
out = self.activation(self.bn2(self.fc2(out)))
|
| 73 |
+
out = self.dropout(out)
|
| 74 |
+
out = self.fc3(out)
|
| 75 |
+
out = out.softmax(dim=1)
|
| 76 |
+
return out
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def load_models_and_predict(text, device):
|
| 80 |
+
# 加载模型
|
| 81 |
+
MacBERT_base_CDialBias = torch.load('models\MacBERT-base-CDialBias.pth')
|
| 82 |
+
MacBERT_base_CDialBias.to(device)
|
| 83 |
+
MacBERT_base_COLD = torch.load('models\MacBERT-base-CDialBias.pth')
|
| 84 |
+
MacBERT_base_COLD.to(device)
|
| 85 |
+
|
| 86 |
+
# 获取密钥和ID
|
| 87 |
+
os.environ['APPBUILDER_TOKEN'] = "bce-v3/ALTAK-n2XgeA6FS3Q5E7Jab6UwE/850b44ebec64c4cad705986ab0b5e3df4b05d407"
|
| 88 |
+
app_id = "df881861-9fa6-40b6-b3bd-26df5f5d4b9a"
|
| 89 |
+
|
| 90 |
+
# 初始化agent实例
|
| 91 |
+
your_agent = appbuilder.AppBuilderClient(app_id)
|
| 92 |
+
|
| 93 |
+
# 创建会话id
|
| 94 |
+
conversation_id = your_agent.create_conversation()
|
| 95 |
+
|
| 96 |
+
# 加载字典和分词工具
|
| 97 |
+
tokenizer = BertTokenizer.from_pretrained('hfl/chinese-macbert-base')
|
| 98 |
+
|
| 99 |
+
# 对输入文本进行编码
|
| 100 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 101 |
+
|
| 102 |
+
# 将输入数据移动到相同的设备上
|
| 103 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 104 |
+
|
| 105 |
+
# 设置模型为评估模式
|
| 106 |
+
MacBERT_base_CDialBias.eval()
|
| 107 |
+
MacBERT_base_COLD.eval()
|
| 108 |
+
|
| 109 |
+
# 调用千帆api获取标签
|
| 110 |
+
msg = your_agent.run(conversation_id, text)
|
| 111 |
+
answer = msg.content.answer
|
| 112 |
+
|
| 113 |
+
# 进行预测
|
| 114 |
+
with torch.no_grad():
|
| 115 |
+
out1 = MacBERT_base_CDialBias(**inputs)
|
| 116 |
+
with torch.no_grad():
|
| 117 |
+
out2 = MacBERT_base_COLD(**inputs)
|
| 118 |
+
|
| 119 |
+
out1 = torch.argmax(out1, dim=1).item()
|
| 120 |
+
out2 = torch.argmax(out2, dim=1).item()
|
| 121 |
+
out3 = answer[0]
|
| 122 |
+
|
| 123 |
+
# 分析结果
|
| 124 |
+
if out3 == "1":
|
| 125 |
+
if out1 == out2 == out3 == 1:
|
| 126 |
+
result = "这句话具有攻击性和社会偏见"
|
| 127 |
+
elif out1 == 0 and out2 == 1:
|
| 128 |
+
result = "这句话具有攻击性,但无社会偏见"
|
| 129 |
+
elif out1 == 1 and out2 == 0:
|
| 130 |
+
result = "这句话不具有攻击性,但具有社会偏见"
|
| 131 |
+
else:
|
| 132 |
+
result = "这句话具有攻击性"
|
| 133 |
+
elif out3 == "0":
|
| 134 |
+
if out1 == out2 == out3 == 0:
|
| 135 |
+
result = "这句话不具有攻击性和社会偏见"
|
| 136 |
+
elif out1 == 0 and out2 == 1:
|
| 137 |
+
result = "这句话具有攻击性,但无社会偏见"
|
| 138 |
+
elif out1 == 1 and out2 == 0:
|
| 139 |
+
result = "这句话不具有攻击性,但具有社会偏见"
|
| 140 |
+
else:
|
| 141 |
+
result = "这句话不具有攻击性"
|
| 142 |
+
return result
|
| 143 |
+
|
| 144 |
+
# 页面配置
|
| 145 |
+
st.set_page_config(page_title="文件式文本检测工具")
|
| 146 |
+
st.title("批量检测攻击性和偏见")
|
| 147 |
+
|
| 148 |
+
with st.sidebar:
|
| 149 |
+
# 初始化session state
|
| 150 |
+
if 'logged_in' not in st.session_state:
|
| 151 |
+
st.session_state.logged_in = False
|
| 152 |
+
|
| 153 |
+
# 用户名和密码输入
|
| 154 |
+
username = st.sidebar.text_input('用户名')
|
| 155 |
+
password = st.sidebar.text_input('密码', type='password')
|
| 156 |
+
|
| 157 |
+
# 登录按钮
|
| 158 |
+
if st.sidebar.button('登录'):
|
| 159 |
+
# 这里可以添加验证逻辑,例如检查用户名和密码是否正确
|
| 160 |
+
if username == 'admin' and password == '12345':
|
| 161 |
+
st.session_state.logged_in = True
|
| 162 |
+
st.sidebar.success('登录成功!')
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
else:
|
| 166 |
+
st.error('用户名或密码错误,请重试。')
|
| 167 |
+
st.stop()
|
| 168 |
+
st.divider()
|
| 169 |
+
|
| 170 |
+
# 文件上传
|
| 171 |
+
file = st.file_uploader("上传你的CSV文件", type=["csv"])
|
| 172 |
+
|
| 173 |
+
if file is not None:
|
| 174 |
+
# 读取文件
|
| 175 |
+
df = pd.read_csv(file)
|
| 176 |
+
st.dataframe(df)
|
| 177 |
+
|
| 178 |
+
# 输入列名
|
| 179 |
+
column = st.text_input("请输入需要判断的内容的列名")
|
| 180 |
+
|
| 181 |
+
# 添加保存结果的选项
|
| 182 |
+
save_results = st.checkbox("保存结果为CSV文件")
|
| 183 |
+
|
| 184 |
+
if st.button("开始检测") and st.session_state.logged_in == True:
|
| 185 |
+
if column not in df.columns:
|
| 186 |
+
st.error(f"列名 '{column}' 不存在于数据集中,请检查并重新输入。")
|
| 187 |
+
else:
|
| 188 |
+
# 创建一个新的DataFrame来存储结果
|
| 189 |
+
results_df = pd.DataFrame(columns=['检测文本', '检测结果'])
|
| 190 |
+
|
| 191 |
+
# 显示进度条
|
| 192 |
+
progress_bar = st.progress(0)
|
| 193 |
+
|
| 194 |
+
# 初始化停止标志
|
| 195 |
+
stop_flag = False
|
| 196 |
+
|
| 197 |
+
# 添加停止按钮
|
| 198 |
+
stop_button = st.button("停止检测")
|
| 199 |
+
|
| 200 |
+
for i, (index, row) in enumerate(df.iterrows()):
|
| 201 |
+
|
| 202 |
+
# 如果用户点击了停止按钮
|
| 203 |
+
if stop_button:
|
| 204 |
+
stop_flag = True
|
| 205 |
+
break
|
| 206 |
+
# 获取特定列的内容
|
| 207 |
+
text = row[column]
|
| 208 |
+
|
| 209 |
+
# 进行预测
|
| 210 |
+
with st.spinner("AI正在思考中,请稍等..."):
|
| 211 |
+
result = load_models_and_predict(text, device)
|
| 212 |
+
|
| 213 |
+
# 将结果添加到新的DataFrame中
|
| 214 |
+
results_df.loc[i] = [text, result]
|
| 215 |
+
r = results_df.loc[i]
|
| 216 |
+
|
| 217 |
+
# 显示结果
|
| 218 |
+
st.dataframe(r)
|
| 219 |
+
|
| 220 |
+
st.divider()
|
| 221 |
+
|
| 222 |
+
# 更新进度条
|
| 223 |
+
progress_bar.progress((i + 1) / len(df))
|
| 224 |
+
|
| 225 |
+
# 完成处理
|
| 226 |
+
progress_bar.empty()
|
| 227 |
+
|
| 228 |
+
# 如果用户点击了停止按钮
|
| 229 |
+
if stop_flag:
|
| 230 |
+
st.warning("检测已停止。")
|
| 231 |
+
else:
|
| 232 |
+
st.success("所有文本已检测完成!")
|
| 233 |
+
|
| 234 |
+
# 如果用户选择了保存结果
|
| 235 |
+
if (save_results and not stop_flag) or st.button("保存结果为CSV文件"):
|
| 236 |
+
# 提供下载链接
|
| 237 |
+
csv_result = results_df.to_csv(index=False)
|
| 238 |
+
st.download_button(
|
| 239 |
+
label="下载结果",
|
| 240 |
+
data=csv_result,
|
| 241 |
+
file_name='results.csv',
|
| 242 |
+
mime='text/csv'
|
| 243 |
+
)
|
| 244 |
+
elif st.button("开始检测") and st.session_state.logged_in == False:
|
| 245 |
+
st.error("请先登录!")
|
| 246 |
+
st.stop()
|
| 247 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
appbuilder==0.0.20191210.1
|
| 2 |
+
appbuilder_sdk==0.9.0
|
| 3 |
+
pandas==2.2.2
|
| 4 |
+
streamlit==1.36.0
|
| 5 |
+
torch==2.3.1
|
| 6 |
+
transformers==4.42.4
|