File size: 22,623 Bytes
eccd289 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 |
# Deep Learning Emotion Classification - Code Explanation
This document provides a detailed line-by-line explanation of the `main.ipynb` notebook, which implements a multi-label emotion classification system using the DeBERTa transformer model with K-Fold cross-validation.
---
## Section 1: Imports & Setup
### Lines 18-36: Import Statements
```python
import numpy as np
import pandas as pd
```
- **numpy**: Used for numerical operations, array manipulation, and random seed setting
- **pandas**: Used for data loading and manipulation (CSV files, DataFrames)
```python
import torch
import torch.nn as nn
```
- **torch**: PyTorch deep learning framework for tensor operations and model training
- **torch.nn**: Neural network modules including loss functions
```python
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import f1_score
```
- **StratifiedKFold**: Creates k-fold splits while maintaining class distribution in each fold
- **f1_score**: Calculates F1 metric for evaluation (harmonic mean of precision and recall)
```python
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
get_linear_schedule_with_warmup,
AutoConfig
)
```
- **AutoTokenizer**: Automatically loads the appropriate tokenizer for the specified model
- **AutoModelForSequenceClassification**: Pre-trained transformer model for classification tasks
- **get_linear_schedule_with_warmup**: Learning rate scheduler with warmup and linear decay
- **AutoConfig**: Model configuration loader
```python
from torch.optim import AdamW
```
- **AdamW**: Adam optimizer with decoupled weight decay (better than standard Adam for transformers)
```python
from torch.cuda.amp import autocast, GradScaler
```
- **autocast**: Enables automatic mixed precision (AMP) to speed up training
- **GradScaler**: Scales gradients for mixed precision training to prevent underflow
```python
import gc
import warnings
import os
```
- **gc**: Garbage collection to free up memory
- **warnings**: To suppress warning messages
- **os**: For file system operations and environment variables
```python
warnings.filterwarnings("ignore")
```
- Suppresses all warning messages for cleaner output
---
## Section 2: Configuration
### Lines 52-68: Configuration Class
```python
class Config:
SEED = 42
```
- Sets random seed for reproducibility across all random operations
```python
LABELS = ["anger", "fear", "joy", "sadness", "surprise"]
```
- Defines the 5 emotion labels for multi-label classification
```python
MODEL_NAME = "microsoft/deberta-v3-base"
```
- Specifies the pre-trained model (DeBERTa v3 base - 184M parameters, SOTA performance)
```python
MAX_LEN = 128
```
- Maximum sequence length for tokenization (tokens longer than this are truncated)
```python
BATCH_SIZE = 16
```
- Number of samples processed together in one forward/backward pass
```python
EPOCHS = 4
```
- Number of complete passes through the training dataset
```python
LR = 1.5e-5
```
- Learning rate (1.5 × 10⁻⁵) - small value typical for fine-tuning transformers
```python
WEIGHT_DECAY = 0.01
```
- L2 regularization strength to prevent overfitting
```python
WARMUP_RATIO = 0.1
```
- Fraction of training steps used for learning rate warmup (10% of total steps)
```python
N_FOLDS = 5
```
- Number of folds for K-Fold cross-validation
```python
TRAIN_CSV = "/kaggle/input/2025-sep-dl-gen-ai-project/train.csv"
TEST_CSV = "/kaggle/input/2025-sep-dl-gen-ai-project/test.csv"
```
- Paths to training and test datasets (Kaggle environment paths)
```python
SUBMISSION_PATH = "submission.csv"
```
- Output file for predictions
```python
CONFIG = Config()
```
- Creates a global instance of the configuration class
---
## Section 3: Seed & Device Setup
### Lines 84-93: Reproducibility and Device Selection
```python
def set_seed(seed=CONFIG.SEED):
np.random.seed(seed)
```
- Sets numpy's random seed for reproducible random number generation
```python
torch.manual_seed(seed)
```
- Sets PyTorch's random seed for CPU operations
```python
torch.cuda.manual_seed_all(seed)
```
- Sets PyTorch's random seed for all GPU devices
```python
os.environ['PYTHONHASHSEED'] = str(seed)
```
- Sets hash seed for Python's built-in hash() function for reproducibility
```python
set_seed()
```
- Calls the seed setting function
```python
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
```
- Checks if GPU is available; uses GPU if available, otherwise falls back to CPU
- Prints the device being used for training
---
## Section 4: Utility Functions
### Lines 109-115: `ensure_text_column` Function
```python
def ensure_text_column(df: pd.DataFrame) -> pd.DataFrame:
if "text" in df.columns:
return df
```
- Checks if DataFrame already has a "text" column; if yes, returns unchanged
```python
for c in ["comment_text", "sentence", "content", "review"]:
if c in df.columns:
return df.rename(columns={c: "text"})
```
- Searches for common alternative text column names
- Renames the first matching column to "text" for standardization
```python
raise ValueError("No text column found. Add/rename your text column to 'text'.")
```
- Raises an error if no text column is found
### Lines 117-126: `tune_thresholds` Function
```python
def tune_thresholds(y_true: np.ndarray, y_prob: np.ndarray) -> np.ndarray:
th = np.zeros(y_true.shape[1], dtype=np.float32)
```
- Creates array to store optimal threshold for each label (initialized to 0)
- Multi-label classification requires separate thresholds per label
```python
for j in range(y_true.shape[1]):
best_t, best_f1 = 0.5, -1
```
- Iterates through each label
- Initializes best threshold to 0.5 (default) and best F1 to -1
```python
for t in np.linspace(0.1, 0.9, 17):
```
- Tests 17 threshold values evenly spaced between 0.1 and 0.9
```python
f1 = f1_score(y_true[:, j], (y_prob[:, j] >= t).astype(int), zero_division=0)
```
- Calculates F1 score for current label and threshold
- Converts probabilities to binary predictions using threshold
```python
if f1 > best_f1:
best_f1, best_t = f1, t
```
- Updates best threshold if current F1 is better
```python
th[j] = best_t
return th
```
- Stores optimal threshold for each label and returns the array
### Lines 128-141: `get_optimizer_params` Function
```python
def get_optimizer_params(model, lr, weight_decay):
param_optimizer = list(model.named_parameters())
```
- Gets all model parameters with their names
```python
no_decay = ["bias", "LayerNorm.bias", "LayerNorm.weight"]
```
- Lists parameters that should NOT have weight decay applied
- Bias and LayerNorm parameters typically trained without weight decay
```python
optimizer_parameters = [
{
"params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
"weight_decay": weight_decay,
},
```
- First parameter group: all parameters EXCEPT bias and LayerNorm
- These parameters will have weight decay applied
```python
{
"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
```
- Second parameter group: only bias and LayerNorm parameters
- These parameters have weight decay set to 0.0
```python
return optimizer_parameters
```
- Returns grouped parameters for differential weight decay
---
## Section 5: Dataset Class
### Lines 157-180: `EmotionDS` Class
```python
class EmotionDS(torch.utils.data.Dataset):
def __init__(self, df, tokenizer, max_len, is_test=False):
```
- Custom PyTorch Dataset class for emotion classification
- `is_test` flag indicates whether this is test data (no labels)
```python
self.texts = df["text"].tolist()
```
- Extracts text data as a Python list
```python
self.is_test = is_test
if not is_test:
self.labels = df[CONFIG.LABELS].values.astype(np.float32)
```
- Stores test flag
- If training data, extracts multi-label targets as float32 array
```python
self.tok = tokenizer
self.max_len = max_len
```
- Stores tokenizer and max length for later use
```python
def __len__(self):
return len(self.texts)
```
- Returns dataset size (required by PyTorch)
```python
def __getitem__(self, i):
enc = self.tok(
self.texts[i],
truncation=True,
padding="max_length",
max_length=self.max_len,
return_tensors="pt",
)
```
- Tokenizes the text at index `i`
- **truncation**: Cuts text longer than max_len
- **padding**: Pads shorter sequences to max_len
- **return_tensors="pt"**: Returns PyTorch tensors
```python
item = {k: v.squeeze(0) for k, v in enc.items()}
```
- Removes the batch dimension (1, seq_len) → (seq_len)
- Returns dict with keys: input_ids, attention_mask, token_type_ids (if applicable)
```python
if not self.is_test:
item["labels"] = torch.tensor(self.labels[i])
return item
```
- Adds labels to the item dict if training data
- Returns the complete item
---
## Section 6: Training & Validation Helper Functions
### Lines 196-213: `train_one_epoch` Function
```python
def train_one_epoch(model, loader, optimizer, scheduler, scaler, criterion):
model.train()
```
- Sets model to training mode (enables dropout, batch normalization updates)
```python
losses = []
for batch in loader:
```
- Initializes list to track losses
- Iterates through batches
```python
batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}
```
- Moves batch data to GPU (or CPU)
- `non_blocking=True`: Async transfer for faster processing
```python
optimizer.zero_grad(set_to_none=True)
```
- Clears gradients from previous step
- `set_to_none=True`: More memory efficient than setting to zero
```python
with autocast(enabled=True):
out = model(input_ids=batch["input_ids"], attention_mask=batch["attention_mask"])
loss = criterion(out.logits, batch["labels"])
```
- **autocast**: Uses mixed precision (float16) for faster computation
- Forward pass through model
- Calculates loss between predictions (logits) and true labels
```python
scaler.scale(loss).backward()
```
- Scales loss to prevent gradient underflow in mixed precision
- Computes gradients via backpropagation
```python
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
```
- Unscales gradients before clipping
- Clips gradients to maximum norm of 1.0 to prevent exploding gradients
```python
scaler.step(optimizer)
scaler.update()
```
- Updates model parameters (with scaled gradients)
- Updates the scaler's internal state
```python
scheduler.step()
```
- Updates learning rate according to schedule
```python
losses.append(loss.item())
return np.mean(losses)
```
- Stores loss value
- Returns average loss for the epoch
### Lines 215-230: `validate` Function
```python
def validate(model, loader, criterion):
model.eval()
```
- Sets model to evaluation mode (disables dropout, fixes batch norm)
```python
losses = []
preds = []
targs = []
```
- Initializes lists for losses, predictions, and targets
```python
with torch.no_grad():
```
- Disables gradient computation (saves memory and speeds up inference)
```python
for batch in loader:
batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}
with autocast(enabled=True):
out = model(input_ids=batch["input_ids"], attention_mask=batch["attention_mask"])
loss = criterion(out.logits, batch["labels"])
```
- Moves batch to device
- Forward pass with mixed precision
- Calculates validation loss
```python
losses.append(loss.item())
preds.append(torch.sigmoid(out.logits).float().cpu().numpy())
targs.append(batch["labels"].cpu().numpy())
```
- Stores loss
- Applies sigmoid to convert logits to probabilities [0, 1]
- Moves predictions and targets to CPU as numpy arrays
```python
return np.mean(losses), np.vstack(preds), np.vstack(targs)
```
- Returns average loss, stacked predictions, and stacked targets
---
## Section 7: Main K-Fold Training Loop
### Lines 246-324: `run_training` Function
```python
def run_training():
if not os.path.exists(CONFIG.TRAIN_CSV):
print("Train CSV not found. Please check the path.")
return None, None
```
- Checks if training data exists
- Returns None if not found (graceful failure)
```python
df = pd.read_csv(CONFIG.TRAIN_CSV)
df = ensure_text_column(df)
```
- Loads training data
- Ensures text column exists
```python
skf = StratifiedKFold(n_splits=CONFIG.N_FOLDS, shuffle=True, random_state=CONFIG.SEED)
y_str = df[CONFIG.LABELS].astype(str).agg("".join, axis=1)
```
- Creates 5-fold stratified splitter
- Converts multi-label to string representation for stratification
- Example: [1,0,1,0,0] → "10100"
```python
oof_preds = np.zeros((len(df), len(CONFIG.LABELS)))
```
- Initializes out-of-fold predictions array (for all training samples)
```python
tokenizer = AutoTokenizer.from_pretrained(CONFIG.MODEL_NAME)
```
- Loads DeBERTa tokenizer
```python
for fold, (train_idx, val_idx) in enumerate(skf.split(df, y_str)):
print(f"\n{'='*20} FOLD {fold+1}/{CONFIG.N_FOLDS} {'='*20}")
```
- Iterates through each fold
- `train_idx`: indices for training, `val_idx`: indices for validation
```python
df_tr = df.iloc[train_idx].reset_index(drop=True)
df_va = df.iloc[val_idx].reset_index(drop=True)
```
- Splits data into training and validation sets for current fold
- Resets index for clean indexing
```python
ds_tr = EmotionDS(df_tr, tokenizer, CONFIG.MAX_LEN)
ds_va = EmotionDS(df_va, tokenizer, CONFIG.MAX_LEN)
```
- Creates PyTorch datasets for training and validation
```python
dl_tr = torch.utils.data.DataLoader(ds_tr, batch_size=CONFIG.BATCH_SIZE, shuffle=True, num_workers=2, pin_memory=True)
dl_va = torch.utils.data.DataLoader(ds_va, batch_size=CONFIG.BATCH_SIZE, shuffle=False, num_workers=2, pin_memory=True)
```
- Creates data loaders
- **shuffle=True** for training (randomizes batch order)
- **shuffle=False** for validation (keeps consistent order)
- **num_workers=2**: Uses 2 subprocesses for data loading
- **pin_memory=True**: Speeds up CPU→GPU transfer
```python
model = AutoModelForSequenceClassification.from_pretrained(
CONFIG.MODEL_NAME,
num_labels=len(CONFIG.LABELS),
problem_type="multi_label_classification"
)
model.to(device)
```
- Loads pre-trained DeBERTa model
- Configures for 5-label multi-label classification
- Moves model to GPU/CPU
```python
optimizer_params = get_optimizer_params(model, CONFIG.LR, CONFIG.WEIGHT_DECAY)
optimizer = AdamW(optimizer_params, lr=CONFIG.LR)
```
- Gets parameter groups with differential weight decay
- Creates AdamW optimizer
```python
total_steps = len(dl_tr) * CONFIG.EPOCHS
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=int(total_steps * CONFIG.WARMUP_RATIO),
num_training_steps=total_steps
)
```
- Calculates total training steps
- Creates learning rate scheduler:
- Warmup: LR increases linearly for 10% of steps
- Decay: LR decreases linearly to 0 for remaining 90%
```python
criterion = nn.BCEWithLogitsLoss()
scaler = GradScaler(enabled=True)
```
- **BCEWithLogitsLoss**: Binary cross-entropy loss for multi-label classification
- Creates gradient scaler for mixed precision
```python
best_f1 = 0
best_state = None
```
- Initializes tracking for best model
```python
for ep in range(CONFIG.EPOCHS):
train_loss = train_one_epoch(model, dl_tr, optimizer, scheduler, scaler, criterion)
val_loss, val_preds, val_targs = validate(model, dl_va, criterion)
```
- Trains for one epoch
- Validates on validation set
```python
val_f1 = f1_score(val_targs, (val_preds >= 0.5).astype(int), average="macro", zero_division=0)
```
- Calculates macro F1 score (average F1 across all labels)
- Uses 0.5 threshold for predictions
```python
print(f"Ep {ep+1}: TrLoss={train_loss:.4f} | VaLoss={val_loss:.4f} | VaF1={val_f1:.4f}")
```
- Prints epoch metrics
```python
if val_f1 > best_f1:
best_f1 = val_f1
best_state = model.state_dict()
```
- Saves model state if validation F1 improves
```python
torch.save(best_state, f"model_fold_{fold}.pth")
```
- Saves best model weights to disk
```python
model.load_state_dict(best_state)
_, val_preds, _ = validate(model, dl_va, criterion)
oof_preds[val_idx] = val_preds
```
- Loads best weights
- Gets predictions on validation set
- Stores out-of-fold predictions
```python
del model, optimizer, scaler, scheduler
torch.cuda.empty_cache()
gc.collect()
```
- Deletes objects to free memory
- Clears GPU cache
- Runs garbage collector
```python
return oof_preds, df[CONFIG.LABELS].values
```
- Returns out-of-fold predictions and true labels
```python
if os.path.exists(CONFIG.TRAIN_CSV):
oof_preds, y_true = run_training()
else:
print("Skipping training as data is not found (likely in a dry-run environment).")
```
- Executes training if data exists
- Otherwise skips gracefully
---
## Section 8: Threshold Optimization
### Lines 340-347: Threshold Tuning
```python
if os.path.exists(CONFIG.TRAIN_CSV):
best_thresholds = tune_thresholds(y_true, oof_preds)
```
- Finds optimal threshold for each emotion label using validation predictions
```python
oof_tuned = (oof_preds >= best_thresholds).astype(int)
```
- Converts probabilities to binary predictions using optimized thresholds
```python
final_f1 = f1_score(y_true, oof_tuned, average="macro", zero_division=0)
print(f"\nFinal CV Macro F1: {final_f1:.4f}")
print(f"Best Thresholds: {best_thresholds}")
```
- Calculates cross-validated F1 score with optimized thresholds
- Prints final performance and optimal thresholds
```python
else:
best_thresholds = np.array([0.5] * len(CONFIG.LABELS))
```
- Falls back to 0.5 thresholds if training data not available
---
## Section 9: Inference & Submission
### Lines 363-420: `predict_test` Function
```python
def predict_test(thresholds):
if not os.path.exists(CONFIG.TEST_CSV):
print("Test CSV not found.")
return
```
- Checks if test data exists
```python
df_test = pd.read_csv(CONFIG.TEST_CSV)
df_test = ensure_text_column(df_test)
```
- Loads test data and ensures text column
```python
tokenizer = AutoTokenizer.from_pretrained(CONFIG.MODEL_NAME)
ds_test = EmotionDS(df_test, tokenizer, CONFIG.MAX_LEN, is_test=True)
dl_test = torch.utils.data.DataLoader(ds_test, batch_size=CONFIG.BATCH_SIZE, shuffle=False, num_workers=2)
```
- Creates tokenizer, dataset, and data loader for test data
- `is_test=True`: No labels expected
```python
fold_preds = []
```
- Initializes list to store predictions from each fold
```python
for fold in range(CONFIG.N_FOLDS):
model_path = f"model_fold_{fold}.pth"
if not os.path.exists(model_path):
print(f"Model for fold {fold} not found, skipping.")
continue
```
- Iterates through all folds
- Checks if model exists
```python
print(f"Predicting Fold {fold+1}...")
model = AutoModelForSequenceClassification.from_pretrained(
CONFIG.MODEL_NAME,
num_labels=len(CONFIG.LABELS),
problem_type="multi_label_classification"
)
model.load_state_dict(torch.load(model_path))
model.to(device)
model.eval()
```
- Loads model architecture
- Loads trained weights
- Sets to evaluation mode
```python
preds = []
with torch.no_grad():
for batch in dl_test:
batch = {k: v.to(device, non_blocking=True) for k, v in batch.items()}
with autocast(enabled=True):
out = model(input_ids=batch["input_ids"], attention_mask=batch["attention_mask"])
preds.append(torch.sigmoid(out.logits).float().cpu().numpy())
```
- Makes predictions without computing gradients
- Uses mixed precision for speed
- Applies sigmoid to get probabilities
```python
fold_preds.append(np.vstack(preds))
del model
torch.cuda.empty_cache()
gc.collect()
```
- Stores fold predictions
- Frees memory
```python
if not fold_preds:
print("No predictions made.")
return
```
- Checks if any predictions were made
```python
avg_preds = np.mean(fold_preds, axis=0)
```
- Averages predictions across all folds (ensemble)
```python
final_preds = (avg_preds >= thresholds).astype(int)
```
- Applies optimized thresholds to get binary predictions
```python
sub = pd.DataFrame(columns=["id"] + CONFIG.LABELS)
sub["id"] = df_test["id"] if "id" in df_test.columns else np.arange(len(df_test))
sub[CONFIG.LABELS] = final_preds
sub.to_csv(CONFIG.SUBMISSION_PATH, index=False)
print(f"Submission saved to {CONFIG.SUBMISSION_PATH}")
print(sub.head())
```
- Creates submission DataFrame
- Adds ID column (from data or generated)
- Adds prediction columns
- Saves to CSV
- Displays first few rows
```python
predict_test(best_thresholds)
```
- Executes prediction function with optimized thresholds
---
## Summary
This notebook implements a **robust emotion classification pipeline** with:
1. **K-Fold Cross-Validation**: 5-fold stratified CV for reliable performance estimates
2. **State-of-the-Art Model**: DeBERTa-v3-base transformer
3. **Optimization Techniques**:
- Mixed precision training (faster, less memory)
- Gradient clipping (stability)
- Learning rate warmup and decay
- Differential weight decay
4. **Threshold Optimization**: Per-label thresholds for better F1 scores
5. **Ensemble Prediction**: Averages predictions from all folds
6. **Memory Management**: Explicit cleanup between folds
The model predicts 5 emotions (anger, fear, joy, sadness, surprise) in a **multi-label** setting, where text can have multiple emotions simultaneously.
|