File size: 5,698 Bytes
2014afd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "025d2c7e",
   "metadata": {},
   "source": [
    "# Bi-LSTM Submission\n",
    "Generate predictions using the trained Bi-LSTM model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c33463c3",
   "metadata": {},
   "outputs": [],
   "source": [
    "!pip install -q transformers torch pandas numpy huggingface_hub"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e8c71e09",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "from torch.utils.data import Dataset, DataLoader\n",
    "from transformers import AutoTokenizer\n",
    "from huggingface_hub import hf_hub_download\n",
    "\n",
    "# Config\n",
    "LABELS = [\"anger\", \"fear\", \"joy\", \"sadness\", \"surprise\"]\n",
    "MAX_LEN = 100\n",
    "BATCH_SIZE = 32\n",
    "EMBED_DIM = 100\n",
    "HIDDEN_DIM = 128\n",
    "DROPOUT = 0.3\n",
    "DEVICE = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
    "\n",
    "# Paths\n",
    "TEST_CSV = \"/kaggle/input/2025-sep-dl-gen-ai-project/test.csv\"\n",
    "SUBMISSION_CSV = \"submission.csv\"\n",
    "MODEL_FILE = \"model.pth\"\n",
    "\n",
    "# HF Repo (Replace with your repo ID from training notebook)\n",
    "HF_REPO_ID = \"hrshlgunjal/emotion-classifier-bilstm\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c30485d4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Download Model if needed\n",
    "if not os.path.exists(MODEL_FILE):\n",
    "    try:\n",
    "        print(f\"Downloading model from {HF_REPO_ID}...\")\n",
    "        model_path = hf_hub_download(repo_id=HF_REPO_ID, filename=\"pytorch_model.bin\")\n",
    "        import shutil\n",
    "        shutil.copy(model_path, MODEL_FILE)\n",
    "        print(\"Model downloaded.\")\n",
    "    except Exception as e:\n",
    "        print(f\"Could not download model: {e}\")\n",
    "        print(\"Please ensure HF_REPO_ID is correct or upload 'model.pth' manually.\")\n",
    "else:\n",
    "    print(\"Model file found locally.\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e0ba4952",
   "metadata": {},
   "outputs": [],
   "source": [
    "class BiLSTM(nn.Module):\n",
    "    def __init__(self, vocab_size):\n",
    "        super().__init__()\n",
    "        self.embedding = nn.Embedding(vocab_size, EMBED_DIM)\n",
    "        self.lstm = nn.LSTM(EMBED_DIM, HIDDEN_DIM, batch_first=True, bidirectional=True, dropout=DROPOUT, num_layers=2)\n",
    "        self.fc = nn.Linear(HIDDEN_DIM * 2, len(LABELS))\n",
    "        \n",
    "    def forward(self, x):\n",
    "        x = self.embedding(x)\n",
    "        _, (hidden, _) = self.lstm(x)\n",
    "        x = torch.cat((hidden[-2], hidden[-1]), dim=1)\n",
    "        return self.fc(x)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a5594b26",
   "metadata": {},
   "outputs": [],
   "source": [
    "def predict():\n",
    "    if not os.path.exists(TEST_CSV):\n",
    "        print(\"Test data not found.\")\n",
    "        return\n",
    "\n",
    "    # Load Data\n",
    "    df = pd.read_csv(TEST_CSV)\n",
    "    if \"text\" not in df.columns: df = df.rename(columns={\"comment_text\": \"text\"})\n",
    "    \n",
    "    # Tokenizer\n",
    "    tokenizer = AutoTokenizer.from_pretrained(\"bert-base-uncased\")\n",
    "    \n",
    "    # Dataset\n",
    "    class TestDS(Dataset):\n",
    "        def __init__(self, df, tokenizer):\n",
    "            self.texts = df['text'].tolist()\n",
    "            self.tokenizer = tokenizer\n",
    "        def __len__(self): return len(self.texts)\n",
    "        def __getitem__(self, idx):\n",
    "            enc = self.tokenizer(self.texts[idx], truncation=True, padding='max_length', max_length=MAX_LEN, return_tensors='pt')\n",
    "            return enc['input_ids'].squeeze(0)\n",
    "\n",
    "    loader = DataLoader(TestDS(df, tokenizer), batch_size=BATCH_SIZE)\n",
    "\n",
    "    # Load Model\n",
    "    model = BiLSTM(tokenizer.vocab_size).to(DEVICE)\n",
    "    \n",
    "    if os.path.exists(MODEL_FILE):\n",
    "        model.load_state_dict(torch.load(MODEL_FILE, map_location=DEVICE))\n",
    "        print(f\"Loaded weights from {MODEL_FILE}\")\n",
    "    else:\n",
    "        print(\"No model weights found! Predictions will be random.\")\n",
    "            \n",
    "    model.eval()\n",
    "    \n",
    "    # Inference\n",
    "    all_preds = []\n",
    "    print(\"Predicting...\")\n",
    "    with torch.no_grad():\n",
    "        for batch in loader:\n",
    "            logits = model(batch.to(DEVICE))\n",
    "            probs = torch.sigmoid(logits)\n",
    "            all_preds.append(probs.cpu().numpy())\n",
    "            \n",
    "    all_preds = np.vstack(all_preds)\n",
    "    \n",
    "    # Convert to binary (0/1) as per submission requirement\n",
    "    binary_preds = (all_preds >= 0.5).astype(int)\n",
    "    \n",
    "    # Create Submission\n",
    "    submission = pd.DataFrame(binary_preds, columns=LABELS)\n",
    "    submission['id'] = df['id']\n",
    "    submission = submission[['id'] + LABELS]\n",
    "    submission.to_csv(SUBMISSION_CSV, index=False)\n",
    "    print(f\"Saved submission to {SUBMISSION_CSV}\")\n",
    "    print(submission.head())\n",
    "\n",
    "predict()"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "name": "python"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}