File size: 6,394 Bytes
1929337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a76b849
1929337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a76b849
1929337
 
 
 
 
 
 
c94a47f
1929337
 
a76b849
1929337
 
 
 
 
c94a47f
1929337
 
a76b849
1929337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import numpy as np
import h5py
import hnswlib
import torch
import open_clip
import torch
from flask import Flask, request, jsonify
from flask_cors import CORS
from PIL import Image
import requests
import io
import base64
from huggingface_hub import hf_hub_download
from flask import Response, send_file
import tempfile

PREFETCH_IMAGES = True        # bật lên cho nhanh
PLACEHOLDER_BASE64 = "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mNkYPhfDwAChwGA60e6kgAAAABJRU5ErkJggg=="

app = Flask(__name__)
CORS(app, origins=['*'])

print("\n" + "="*50)
print("📥 INITIALIZING MEDICAL SERVER...")
print("="*50)

# Cấu hình Dataset
HF_TOKEN = os.environ.get("HF_TOKEN")
DATASET_ID = "huynguyen6906/Medical_server_data"

# Tải file từ Hugging Face Dataset
try:
    print(f"Downloading data from {DATASET_ID}...")
    H5_FILE_PATH = hf_hub_download(repo_id=DATASET_ID, filename="Medical_Embedded.h5", repo_type="dataset", token=HF_TOKEN)
    BIN_FILE_PATH = hf_hub_download(repo_id=DATASET_ID, filename="Medical_Embedded.bin", repo_type="dataset", token=HF_TOKEN)
    print(f"✅ Data loaded: {H5_FILE_PATH}")
except Exception as e:
    print(f"❌ Error downloading data: {str(e)}")
    H5_FILE_PATH = 'Medical_Embedded.h5'
    BIN_FILE_PATH = 'Medical_Embedded.bin'

class ImageSearchEngine:
    def __init__(self, h5_file_path=H5_FILE_PATH):
        print("Initializing Search Engine...")
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        print("Loading BiomedCLIP-PubMedBERT_256-vit_base_patch16_224...")
        self.model, preprocess_train, self.preprocess = open_clip.create_model_and_transforms('hf-hub:microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224')
        self.tokenizer = open_clip.get_tokenizer('hf-hub:microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224')
        
        if not os.path.exists(h5_file_path):
             # Tạo file giả nếu không có để server không crash ngay (giúp debug)
             print("⚠️ H5 file not found. Running in empty mode.")
             self.max_elements = 0
             self.dim = 512
             return

        self.h5_file = h5py.File(h5_file_path, 'r')
        self.dim = self.h5_file['embeddings'].shape[1]
        self.max_elements = len(self.h5_file['urls'])
        print(f"Loaded {self.max_elements} image embeddings. Dim: {self.dim}")

        self.index = hnswlib.Index(space='cosine', dim=self.dim)
        if os.path.exists(BIN_FILE_PATH):
            print(f"⚡ Loading Index from {BIN_FILE_PATH}...")
            self.index.load_index(BIN_FILE_PATH, max_elements=self.max_elements)
            self.index.set_ef(400)
        else:
            print("⚠️ BIN file not found.")

    def text_to_vector(self, text):
        if isinstance(text, str):
            text = [text]
        
        tokens = self.tokenizer(text).to(self.device)
        
        with torch.no_grad():
            text_features = self.model.encode_text(tokens)    
            text_features = text_features / text_features.norm(dim=-1, keepdim=True)
            
        return text_features.cpu().numpy()

    def image_to_vector(self, image):
        image_tensor = self.preprocess(image).unsqueeze(0).to(self.device)
        
        with torch.no_grad():
            image_features = self.model.encode_image(image_tensor)
            image_features = image_features / image_features.norm(dim=-1, keepdim=True)
        
        return image_features.cpu().numpy().astype(np.float32)[0]

    def search(self, vector, k=10):
        if self.max_elements == 0: 
            return []
        
        indices, distances = self.index.knn_query(vector, k=k)
        results = []
        for idx, dist in zip(indices[0], distances[0]):
            url_bytes = self.h5_file['urls'][idx]
            url = url_bytes.decode('utf-8') if isinstance(url_bytes, bytes) else str(url_bytes)
            url = url.strip()
            
            result = {
                'path': url,
                'url': url,
                'score': float(1 - dist)
            }
            # Nếu bật prefetch → gửi thẳng URL (frontend sẽ dùng /i/ để load cực nhanh)
            if PREFETCH_IMAGES:
                result['image_data'] = url  # không cần base64 nữa!
            results.append(result)
        return results


search_engine = ImageSearchEngine()

# --- ROUTES ---
@app.route('/health', methods=['GET'])
def health_check():
    return jsonify({'status': 'healthy', 'total_images': search_engine.max_elements})


@app.route('/search', methods=['POST'])
def search_text():

    try:
        data = request.get_json()
        query = data.get('query', '')
        k = int(data.get('k', 20))
        vector = search_engine.text_to_vector(query)
        results = search_engine.search(vector, k=k)
        return jsonify({'results': results})
    except Exception as e:
        return jsonify({'error': str(e)}), 500

@app.route('/search/image', methods=['POST'])
def search_image_file():

    try:
        if 'image' not in request.files:
            return jsonify({'error': 'No image provided'}), 400
        
        file = request.files['image']
        k = int(request.form.get('k', 20))
        
        img = Image.open(file.stream).convert('RGB')
        vector = search_engine.image_to_vector(img)
        results = search_engine.search(vector, k=k)
        return jsonify({'results': results})
    except Exception as e:
        return jsonify({'error': str(e)}), 500


@app.route('/i/<path:image_url>')
def fast_proxy(image_url):
    """
    URL đã có sẵn https:// → chỉ cần redirect thẳng, không cần kiểm tra gì thêm
    Ví dụ: /i/i.redd.it/abc123.jpg          → https://i.redd.it/abc123.jpg
            /i/pbs.twimg.com/media/xyz.jpg → https://pbs.twimg.com/media/xyz.jpg
    """
    # image_url là phần sau /i/ → ghép lại thành URL đầy đủ
    full_url = 'https://' + image_url
    
    return f'''
    <script>location.replace("{full_url}")</script>
    <noscript><meta http-equiv="refresh" content="0;url={full_url}"></noscript>
    ''', 200, {'Content-Type': 'text/html'}

@app.route('/placeholder')
def placeholder():
    img = base64.b64decode(PLACEHOLDER_BASE64)
    return Response(img, mimetype='image/png')

if __name__ == '__main__':
    port = 7860
    app.run(host='0.0.0.0', port=port)