iljung1106 commited on
Commit
81d425d
·
1 Parent(s): 1fa8e41

Add bundled model + prototypes (LFS) and Gradio app

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +0 -34
  2. LICENSE +674 -0
  3. README.md +9 -8
  4. THIRD_PARTY_NOTICES.md +13 -0
  5. anime-eyes-cascade.xml +0 -0
  6. app/__init__.py +3 -0
  7. app/model_io.py +108 -0
  8. app/proto_db.py +151 -0
  9. app/view_extractor.py +345 -0
  10. checkpoints_style/per_artist_prototypes_90_10_full.pt +3 -0
  11. checkpoints_style/stage3_epoch24.pt +3 -0
  12. packages.txt +2 -0
  13. requirements.txt +12 -0
  14. webui_gradio.py +446 -0
  15. yolov5_anime/.dockerignore +215 -0
  16. yolov5_anime/.gitattributes +2 -0
  17. yolov5_anime/LICENSE +674 -0
  18. yolov5_anime/README.md +81 -0
  19. yolov5_anime/README.txt +2 -0
  20. yolov5_anime/data/anime.yaml +6 -0
  21. yolov5_anime/data/coco.yaml +35 -0
  22. yolov5_anime/data/coco128.yaml +28 -0
  23. yolov5_anime/data/hyp.finetune.yaml +27 -0
  24. yolov5_anime/data/hyp.scratch.yaml +27 -0
  25. yolov5_anime/data/scripts/get_coco.sh +21 -0
  26. yolov5_anime/data/scripts/get_voc.sh +212 -0
  27. yolov5_anime/data/voc.yaml +21 -0
  28. yolov5_anime/detect.py +171 -0
  29. yolov5_anime/hubconf.py +99 -0
  30. yolov5_anime/models/__init__.py +0 -0
  31. yolov5_anime/models/common.py +118 -0
  32. yolov5_anime/models/experimental.py +145 -0
  33. yolov5_anime/models/export.py +74 -0
  34. yolov5_anime/models/hub/yolov3-spp.yaml +51 -0
  35. yolov5_anime/models/hub/yolov5-fpn.yaml +42 -0
  36. yolov5_anime/models/hub/yolov5-panet.yaml +48 -0
  37. yolov5_anime/models/yolo.py +259 -0
  38. yolov5_anime/models/yolov5l.yaml +48 -0
  39. yolov5_anime/models/yolov5m.yaml +48 -0
  40. yolov5_anime/models/yolov5s.yaml +48 -0
  41. yolov5_anime/models/yolov5x.yaml +48 -0
  42. yolov5_anime/requirements.txt +21 -0
  43. yolov5_anime/test.py +292 -0
  44. yolov5_anime/train.py +516 -0
  45. yolov5_anime/utils/__init__.py +0 -0
  46. yolov5_anime/utils/activations.py +69 -0
  47. yolov5_anime/utils/datasets.py +907 -0
  48. yolov5_anime/utils/general.py +1284 -0
  49. yolov5_anime/utils/google_utils.py +107 -0
  50. yolov5_anime/utils/torch_utils.py +226 -0
.gitattributes CHANGED
@@ -1,35 +1 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
  *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  *.pt filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
LICENSE ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <https://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <https://www.gnu.org/licenses/why-not-lgpl.html>.
README.md CHANGED
@@ -1,14 +1,15 @@
1
  ---
2
  title: ArtistEmbeddingClassifier
3
- emoji: 🌖
4
- colorFrom: purple
5
- colorTo: yellow
6
  sdk: gradio
7
- sdk_version: 6.1.0
8
- app_file: app.py
9
- pinned: false
10
  license: gpl-3.0
11
- short_description: Train an artist embedding model from anime images (whole / f
12
  ---
13
 
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
1
  ---
2
  title: ArtistEmbeddingClassifier
 
 
 
3
  sdk: gradio
4
+ app_file: webui_gradio.py
 
 
5
  license: gpl-3.0
 
6
  ---
7
 
8
+ ### ArtistEmbeddingClassifier (Gradio Space)
9
+
10
+ This Space bundles the model checkpoint + prototype DB and runs the Gradio UI.
11
+
12
+ Notes:
13
+ - This project is GPL-3.0.
14
+ - `yolov5_anime/` is from [zymk9/yolov5_anime](https://github.com/zymk9/yolov5_anime) (GPL-3.0).
15
+ - `anime-eyes-cascade.xml` is from [recette-lemon/Haar-Cascade-Anime-Eye-Detector](https://github.com/recette-lemon/Haar-Cascade-Anime-Eye-Detector) (GPL-3.0).
THIRD_PARTY_NOTICES.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Third-party code and assets (GPL-3.0)
2
+
3
+ This repository includes and/or depends on the following GPL-3.0 licensed projects/assets:
4
+
5
+ - **`yolov5_anime/`**: from [`https://github.com/zymk9/yolov5_anime`](https://github.com/zymk9/yolov5_anime)
6
+ License: GPL-3.0 (see `yolov5_anime/LICENSE`)
7
+
8
+ - **`anime-eyes-cascade.xml`**: from [`https://github.com/recette-lemon/Haar-Cascade-Anime-Eye-Detector`](https://github.com/recette-lemon/Haar-Cascade-Anime-Eye-Detector)
9
+ License: GPL-3.0
10
+
11
+ If you redistribute this repository, ensure you comply with GPL-3.0 requirements, including providing the corresponding source and preserving license notices.
12
+
13
+
anime-eyes-cascade.xml ADDED
The diff for this file is too large to render. See raw diff
 
app/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # App utilities package (model + prototype DB helpers).
2
+
3
+
app/model_io.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from dataclasses import dataclass
4
+ from pathlib import Path
5
+ from typing import Optional, Tuple
6
+
7
+ import torch
8
+
9
+
10
+ @dataclass(frozen=True)
11
+ class LoadedModel:
12
+ model: torch.nn.Module
13
+ device: torch.device
14
+ stage_i: int
15
+ embed_dim: int
16
+ T_w: object
17
+ T_f: object
18
+ T_e: object
19
+
20
+
21
+ def _pick_device(device: str) -> torch.device:
22
+ if device.strip().lower() == "cpu":
23
+ return torch.device("cpu")
24
+ if torch.cuda.is_available():
25
+ return torch.device("cuda")
26
+ return torch.device("cpu")
27
+
28
+
29
+ def load_style_model(
30
+ ckpt_path: str | Path,
31
+ *,
32
+ device: str = "auto",
33
+ ) -> LoadedModel:
34
+ """
35
+ Loads `train_style_ddp.TriViewStyleNet` from a checkpoint saved by `train_style_ddp.py`.
36
+ Returns the model and deterministic val transforms based on the checkpoint stage.
37
+ """
38
+ import train_style_ddp as ts
39
+
40
+ ckpt_path = Path(ckpt_path)
41
+ if not ckpt_path.exists():
42
+ raise FileNotFoundError(str(ckpt_path))
43
+
44
+ dev = _pick_device("cpu" if device == "auto" else device)
45
+ if device == "auto":
46
+ dev = _pick_device("cuda" if torch.cuda.is_available() else "cpu")
47
+
48
+ ck = torch.load(str(ckpt_path), map_location="cpu")
49
+ meta = ck.get("meta", {}) if isinstance(ck, dict) else {}
50
+ stage_i = int(meta.get("stage", 1))
51
+ stage_i = max(1, min(stage_i, len(ts.cfg.stages)))
52
+ stage = ts.cfg.stages[stage_i - 1]
53
+
54
+ T_w, T_f, T_e = ts.make_val_transforms(stage["sz_whole"], stage["sz_face"], stage["sz_eyes"])
55
+
56
+ model = ts.TriViewStyleNet(out_dim=ts.cfg.embed_dim, mix_p=ts.cfg.mixstyle_p, share_backbone=True)
57
+ state = ck["model"] if isinstance(ck, dict) and "model" in ck else ck
58
+ model.load_state_dict(state, strict=False)
59
+ model.eval()
60
+ model = model.to(dev)
61
+ try:
62
+ model = model.to(memory_format=torch.channels_last)
63
+ except Exception:
64
+ pass
65
+
66
+ return LoadedModel(
67
+ model=model,
68
+ device=dev,
69
+ stage_i=stage_i,
70
+ embed_dim=int(ts.cfg.embed_dim),
71
+ T_w=T_w,
72
+ T_f=T_f,
73
+ T_e=T_e,
74
+ )
75
+
76
+
77
+ def embed_triview(
78
+ lm: LoadedModel,
79
+ *,
80
+ whole: Optional[torch.Tensor],
81
+ face: Optional[torch.Tensor],
82
+ eyes: Optional[torch.Tensor],
83
+ ) -> torch.Tensor:
84
+ """
85
+ Computes a single fused embedding for a triview sample.
86
+ Each view tensor must be CHW (already normalized) and will be batched.
87
+ Missing views can be None.
88
+ """
89
+ if whole is None and face is None and eyes is None:
90
+ raise ValueError("At least one of whole/face/eyes must be provided.")
91
+
92
+ views = {}
93
+ masks = {}
94
+ for k, v in (("whole", whole), ("face", face), ("eyes", eyes)):
95
+ if v is None:
96
+ views[k] = None
97
+ masks[k] = torch.zeros(1, dtype=torch.bool, device=lm.device)
98
+ else:
99
+ vb = v.unsqueeze(0).to(lm.device)
100
+ views[k] = vb
101
+ masks[k] = torch.ones(1, dtype=torch.bool, device=lm.device)
102
+
103
+ with torch.no_grad(), torch.amp.autocast("cuda", dtype=getattr(__import__("train_style_ddp"), "amp_dtype", torch.float16), enabled=(lm.device.type == "cuda")):
104
+ z, _, _ = lm.model(views, masks)
105
+ z = torch.nn.functional.normalize(z.float(), dim=1)
106
+ return z.squeeze(0).detach().cpu()
107
+
108
+
app/proto_db.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ from dataclasses import dataclass
4
+ from pathlib import Path
5
+ from typing import Dict, List, Optional, Tuple
6
+
7
+ import torch
8
+
9
+
10
+ @dataclass
11
+ class PrototypeDB:
12
+ centers: torch.Tensor # [N,D] float32
13
+ labels: torch.Tensor # [N] int64
14
+ label_names: List[str] # id -> name
15
+ source_path: Optional[Path] = None
16
+
17
+ @property
18
+ def dim(self) -> int:
19
+ return int(self.centers.shape[1])
20
+
21
+ def id_to_name(self, idx: int) -> str:
22
+ if 0 <= idx < len(self.label_names):
23
+ return self.label_names[idx]
24
+ return str(idx)
25
+
26
+ def ensure_label_id(self, name: str) -> int:
27
+ name = str(name).strip()
28
+ if not name:
29
+ raise ValueError("Empty label name.")
30
+ try:
31
+ i = self.label_names.index(name)
32
+ return int(i)
33
+ except ValueError:
34
+ self.label_names.append(name)
35
+ return len(self.label_names) - 1
36
+
37
+ def add_center(self, label_name: str, center: torch.Tensor) -> int:
38
+ if center.ndim != 1:
39
+ raise ValueError("center must be 1D embedding vector.")
40
+ center = torch.nn.functional.normalize(center.float(), dim=0).view(1, -1)
41
+ lid = self.ensure_label_id(label_name)
42
+ self.centers = torch.cat([self.centers, center], dim=0)
43
+ self.labels = torch.cat([self.labels, torch.tensor([lid], dtype=torch.long)], dim=0)
44
+ return lid
45
+
46
+ def save(self, path: Optional[str | Path] = None) -> Path:
47
+ out = Path(path) if path is not None else self.source_path
48
+ if out is None:
49
+ raise ValueError("No output path specified for saving prototype DB.")
50
+ out.parent.mkdir(parents=True, exist_ok=True)
51
+ torch.save(
52
+ dict(
53
+ centers=self.centers.detach().cpu(),
54
+ labels=self.labels.detach().cpu(),
55
+ label_names=list(self.label_names),
56
+ ),
57
+ str(out),
58
+ )
59
+ self.source_path = out
60
+ return out
61
+
62
+
63
+ def _infer_label_names_from_dataset(dataset_root: Path) -> Optional[List[str]]:
64
+ # `train_style_ddp.TriViewDataset` assigns IDs based on sorted directory names under dataset/<artist>.
65
+ if not dataset_root.exists():
66
+ return None
67
+ artists = sorted([p.name for p in dataset_root.iterdir() if p.is_dir()])
68
+ return artists if artists else None
69
+
70
+
71
+ def load_prototype_db(path: str | Path, *, try_dataset_dir: str | Path = "dataset") -> PrototypeDB:
72
+ p = Path(path)
73
+ if not p.exists():
74
+ raise FileNotFoundError(str(p))
75
+ obj = torch.load(str(p), map_location="cpu")
76
+ if not isinstance(obj, dict) or "centers" not in obj or "labels" not in obj:
77
+ raise ValueError(f"Unsupported prototype file format: {p}")
78
+
79
+ centers = obj["centers"].float()
80
+ labels = obj["labels"].long()
81
+
82
+ label_names = obj.get("label_names")
83
+ if not isinstance(label_names, list) or not all(isinstance(x, str) for x in label_names):
84
+ inferred = _infer_label_names_from_dataset(Path(try_dataset_dir))
85
+ if inferred is None:
86
+ max_id = int(labels.max().item()) if labels.numel() else -1
87
+ label_names = [str(i) for i in range(max_id + 1)]
88
+ else:
89
+ label_names = inferred
90
+
91
+ return PrototypeDB(centers=centers, labels=labels, label_names=label_names, source_path=p)
92
+
93
+
94
+ def topk_predictions(
95
+ db: PrototypeDB,
96
+ z: torch.Tensor,
97
+ *,
98
+ topk: int = 5,
99
+ ) -> List[Tuple[str, float]]:
100
+ """
101
+ Returns [(label_name, score)] sorted by score desc (cosine similarity).
102
+ `z` is 1D embedding (D).
103
+ """
104
+ if z.ndim != 1:
105
+ raise ValueError("z must be 1D.")
106
+ Z = torch.nn.functional.normalize(z.float(), dim=0).view(1, -1)
107
+ C = torch.nn.functional.normalize(db.centers.float(), dim=1)
108
+ sim = (Z @ C.t()).squeeze(0) # [N]
109
+ k = int(max(1, min(topk, sim.numel()))) if sim.numel() else 0
110
+ if k == 0:
111
+ return []
112
+ vals, idxs = torch.topk(sim, k=k)
113
+ out: List[Tuple[str, float]] = []
114
+ for v, i in zip(vals.tolist(), idxs.tolist()):
115
+ lid = int(db.labels[i].item())
116
+ out.append((db.id_to_name(lid), float(v)))
117
+ return out
118
+
119
+
120
+ def topk_predictions_unique_labels(
121
+ db: PrototypeDB,
122
+ z: torch.Tensor,
123
+ *,
124
+ topk: int = 5,
125
+ ) -> List[Tuple[str, float]]:
126
+ """
127
+ Like topk_predictions(), but dedupes by label:
128
+ if a label has multiple prototypes, only the highest score is kept.
129
+ """
130
+ if z.ndim != 1:
131
+ raise ValueError("z must be 1D.")
132
+ Z = torch.nn.functional.normalize(z.float(), dim=0).view(1, -1)
133
+ C = torch.nn.functional.normalize(db.centers.float(), dim=1)
134
+ sim = (Z @ C.t()).squeeze(0) # [N]
135
+ if sim.numel() == 0:
136
+ return []
137
+
138
+ best_by_label: dict[int, float] = {}
139
+ # iterate all prototypes once; keep max per label id
140
+ for i in range(sim.numel()):
141
+ lid = int(db.labels[i].item())
142
+ s = float(sim[i].item())
143
+ prev = best_by_label.get(lid)
144
+ if prev is None or s > prev:
145
+ best_by_label[lid] = s
146
+
147
+ items = sorted(best_by_label.items(), key=lambda kv: kv[1], reverse=True)
148
+ items = items[: max(1, int(topk))]
149
+ return [(db.id_to_name(lid), float(score)) for (lid, score) in items]
150
+
151
+
app/view_extractor.py ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import itertools
4
+ import sys
5
+ import threading
6
+ from dataclasses import dataclass
7
+ from pathlib import Path
8
+ from typing import Optional, Tuple
9
+
10
+ import numpy as np
11
+ import torch
12
+
13
+
14
+ def _patch_torch_load_for_old_ckpt() -> None:
15
+ """
16
+ Matches `anime_face_eye_extract._patch_torch_load_for_old_ckpt()` to load older YOLOv5 checkpoints
17
+ on newer torch versions.
18
+ """
19
+ import numpy as _np
20
+
21
+ try:
22
+ torch.serialization.add_safe_globals([_np.core.multiarray._reconstruct, _np.ndarray])
23
+ except Exception:
24
+ pass
25
+
26
+ _orig_load = torch.load
27
+
28
+ def _patched_load(*args, **kwargs): # noqa: ANN001
29
+ kwargs.setdefault("weights_only", False)
30
+ return _orig_load(*args, **kwargs)
31
+
32
+ torch.load = _patched_load
33
+
34
+
35
+ def _pre(gray: np.ndarray) -> np.ndarray:
36
+ import cv2
37
+
38
+ gray = cv2.GaussianBlur(gray, (3, 3), 0)
39
+ clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
40
+ return clahe.apply(gray)
41
+
42
+
43
+ def _expand(box, margin: float, W: int, H: int):
44
+ x1, y1, x2, y2 = box
45
+ cx = (x1 + x2) / 2.0
46
+ cy = (y1 + y2) / 2.0
47
+ w = (x2 - x1) * (1 + margin)
48
+ h = (y2 - y1) * (1 + margin)
49
+ nx1 = int(round(cx - w / 2))
50
+ ny1 = int(round(cy - h / 2))
51
+ nx2 = int(round(cx + w / 2))
52
+ ny2 = int(round(cy + h / 2))
53
+ nx1 = max(0, min(W, nx1))
54
+ ny1 = max(0, min(H, ny1))
55
+ nx2 = max(0, min(W, nx2))
56
+ ny2 = max(0, min(H, ny2))
57
+ return nx1, ny1, nx2, ny2
58
+
59
+
60
+ def _shrink(img: np.ndarray, limit: int):
61
+ import cv2
62
+
63
+ h, w = img.shape[:2]
64
+ m = max(h, w)
65
+ if m <= limit:
66
+ return img, 1.0
67
+ s = limit / float(m)
68
+ nh, nw = int(h * s), int(w * s)
69
+ small = cv2.resize(img, (nw, nh), interpolation=cv2.INTER_AREA)
70
+ return small, s
71
+
72
+
73
+ def _best_pair(boxes, W: int, H: int):
74
+ clean = [(int(b[0]), int(b[1]), int(b[2]), int(b[3])) for b in boxes]
75
+ if len(clean) < 2:
76
+ return []
77
+
78
+ def cxcy(b):
79
+ x1, y1, x2, y2 = b
80
+ return (x1 + x2) / 2.0, (y1 + y2) / 2.0
81
+
82
+ def area(b):
83
+ x1, y1, x2, y2 = b
84
+ return max(1, (x2 - x1) * (y2 - y1))
85
+
86
+ best = None
87
+ best_s = 1e9
88
+ for b1, b2 in itertools.combinations(clean, 2):
89
+ c1x, c1y = cxcy(b1)
90
+ c2x, c2y = cxcy(b2)
91
+ a1, a2 = area(b1), area(b2)
92
+ horiz = 0.0 if c1x < c2x else 0.5
93
+ y_aln = abs(c1y - c2y) / max(1.0, H)
94
+ szsim = abs(a1 - a2) / float(max(a1, a2))
95
+ gap = abs(c2x - c1x) / max(1.0, W)
96
+ if 0.05 <= gap <= 0.5:
97
+ gap_pen = 0.0
98
+ else:
99
+ gap_pen = 0.5 * ((0.5 + abs(gap - 0.05) * 10) if gap < 0.05 else (gap - 0.5) * 2.0)
100
+ mean_y = (c1y + c2y) / 2.0 / max(1.0, H)
101
+ upper = 0.3 * max(0.0, (mean_y - 0.67) * 2.0)
102
+ s = y_aln + szsim + gap_pen + upper + horiz
103
+ if s < best_s:
104
+ best_s = s
105
+ best = (b1, b2)
106
+
107
+ if best is None:
108
+ return []
109
+ b1, b2 = best
110
+ left, right = (b1, b2) if (b1[0] + b1[2]) <= (b2[0] + b2[2]) else (b2, b1)
111
+ return [("left", left), ("right", right)]
112
+
113
+
114
+ @dataclass
115
+ class ExtractorCfg:
116
+ yolo_dir: Path
117
+ weights: Path
118
+ cascade: Path
119
+ imgsz: int = 640
120
+ conf: float = 0.5
121
+ iou: float = 0.5
122
+ yolo_device: str = "cpu" # "cpu" or "0"
123
+ eye_roi_frac: float = 0.70
124
+ eye_min_size: int = 12
125
+ eye_margin: float = 0.60
126
+ neighbors: int = 9
127
+ eye_downscale_limit_roi: int = 512
128
+ eye_downscale_limit_face: int = 768
129
+ eye_fallback_to_face: bool = True
130
+
131
+
132
+ class AnimeFaceEyeExtractor:
133
+ """
134
+ Single-image view extractor (whole -> face crop, eyes crop) based on `anime_face_eye_extract.py`.
135
+ Designed for use in the Gradio UI: caches YOLO model + Haar cascade.
136
+ """
137
+
138
+ def __init__(self, cfg: ExtractorCfg):
139
+ self.cfg = cfg
140
+ self._model = None
141
+ self._device = None
142
+ self._stride = 32
143
+ self._tl = threading.local()
144
+
145
+ def _init_detector(self) -> None:
146
+ if self._model is not None:
147
+ return
148
+
149
+ ydir = self.cfg.yolo_dir.resolve()
150
+ if not ydir.exists():
151
+ raise RuntimeError(f"yolov5_anime dir not found: {ydir}")
152
+ if str(ydir) not in sys.path:
153
+ sys.path.insert(0, str(ydir))
154
+
155
+ _patch_torch_load_for_old_ckpt()
156
+
157
+ from models.experimental import attempt_load
158
+ from utils.torch_utils import select_device
159
+
160
+ self._device = select_device(self.cfg.yolo_device)
161
+ self._model = attempt_load(str(self.cfg.weights), map_location=self._device)
162
+ self._model.eval()
163
+
164
+ self._stride = int(self._model.stride.max())
165
+ s = int(self.cfg.imgsz)
166
+ s = int(np.ceil(s / self._stride) * self._stride)
167
+ self.cfg.imgsz = s
168
+
169
+ def _letterbox_compat(self, img0, new_shape, stride):
170
+ from utils.datasets import letterbox
171
+ try:
172
+ lb = letterbox(img0, new_shape, stride=stride, auto=False)
173
+ except TypeError:
174
+ try:
175
+ lb = letterbox(img0, new_shape, auto=False)
176
+ except TypeError:
177
+ lb = letterbox(img0, new_shape)
178
+ return lb[0]
179
+
180
+ def _detect_faces(self, rgb: np.ndarray):
181
+ import cv2
182
+ self._init_detector()
183
+ from utils.general import non_max_suppression, scale_coords
184
+
185
+ img0 = cv2.cvtColor(rgb, cv2.COLOR_RGB2BGR)
186
+ h0, w0, _ = img0.shape
187
+ img = self._letterbox_compat(img0, self.cfg.imgsz, self._stride)
188
+ img = img[:, :, ::-1].transpose(2, 0, 1)
189
+ img = np.ascontiguousarray(img)
190
+
191
+ im = torch.from_numpy(img).to(self._device)
192
+ im = im.float() / 255.0
193
+ if im.ndim == 3:
194
+ im = im[None]
195
+
196
+ with torch.no_grad():
197
+ pred = self._model(im)[0]
198
+ pred = non_max_suppression(pred, conf_thres=self.cfg.conf, iou_thres=self.cfg.iou, classes=None, agnostic=False)
199
+
200
+ boxes = []
201
+ det = pred[0]
202
+ if det is not None and len(det):
203
+ det[:, :4] = scale_coords((self.cfg.imgsz, self.cfg.imgsz), det[:, :4], (h0, w0)).round()
204
+ for *xyxy, conf, cls in det.tolist():
205
+ x1, y1, x2, y2 = [int(v) for v in xyxy]
206
+ boxes.append((x1, y1, x2, y2))
207
+ return boxes
208
+
209
+ def _get_cascade(self):
210
+ import cv2
211
+
212
+ c = getattr(self._tl, "cascade", None)
213
+ if c is None:
214
+ c = cv2.CascadeClassifier(str(self.cfg.cascade))
215
+ if c.empty():
216
+ raise RuntimeError(f"cascade load fail: {self.cfg.cascade}")
217
+ self._tl.cascade = c
218
+ return c
219
+
220
+ def _detect_eyes_in_roi(self, rgb_roi: np.ndarray):
221
+ import cv2
222
+
223
+ gray = cv2.cvtColor(rgb_roi, cv2.COLOR_RGB2GRAY)
224
+ proc = _pre(gray)
225
+ H, W = proc.shape[:2]
226
+ min_side = max(1, min(W, H))
227
+ dyn_min = int(0.07 * min_side)
228
+ min_sz = max(8, int(self.cfg.eye_min_size), dyn_min)
229
+
230
+ cascade = self._get_cascade()
231
+ raw = cascade.detectMultiScale(
232
+ proc,
233
+ scaleFactor=1.15,
234
+ minNeighbors=int(self.cfg.neighbors),
235
+ minSize=(min_sz, min_sz),
236
+ flags=cv2.CASCADE_SCALE_IMAGE,
237
+ )
238
+ try:
239
+ arr = np.asarray(raw if not isinstance(raw, tuple) else raw[0])
240
+ except Exception:
241
+ arr = np.empty((0, 4), dtype=int)
242
+ if arr.size == 0:
243
+ return []
244
+ if arr.ndim == 1:
245
+ arr = arr.reshape(1, -1)
246
+
247
+ boxes = []
248
+ for r in arr:
249
+ x, y, w, h = [int(v) for v in r[:4]]
250
+ if w <= 0 or h <= 0:
251
+ continue
252
+ boxes.append((x, y, x + w, y + h))
253
+ return boxes
254
+
255
+ @staticmethod
256
+ def _pick_best_face(boxes):
257
+ if not boxes:
258
+ return None
259
+ # choose largest-area face
260
+ def area(b):
261
+ x1, y1, x2, y2 = b
262
+ return max(1, (x2 - x1) * (y2 - y1))
263
+
264
+ return max(boxes, key=area)
265
+
266
+ def extract(self, whole_rgb: np.ndarray) -> Tuple[Optional[np.ndarray], Optional[np.ndarray]]:
267
+ """
268
+ Args:
269
+ whole_rgb: HWC RGB uint8
270
+ Returns:
271
+ (face_rgb, eyes_rgb) as RGB uint8 crops (or None if not found)
272
+ """
273
+ import cv2
274
+
275
+ boxes = self._detect_faces(whole_rgb)
276
+ face_box = self._pick_best_face(boxes)
277
+ if face_box is None:
278
+ return None, None
279
+
280
+ x1, y1, x2, y2 = face_box
281
+ H0, W0 = whole_rgb.shape[:2]
282
+ x1 = max(0, min(W0, x1))
283
+ x2 = max(0, min(W0, x2))
284
+ y1 = max(0, min(H0, y1))
285
+ y2 = max(0, min(H0, y2))
286
+ if x2 <= x1 or y2 <= y1:
287
+ return None, None
288
+
289
+ face = whole_rgb[y1:y2, x1:x2].copy()
290
+
291
+ # eye detection on upper ROI
292
+ H, W = face.shape[:2]
293
+ roi_h = int(H * float(self.cfg.eye_roi_frac))
294
+ roi = face[0: max(1, roi_h), :]
295
+
296
+ roi_small, s_roi = _shrink(roi, int(self.cfg.eye_downscale_limit_roi))
297
+ face_small, s_face = _shrink(face, int(self.cfg.eye_downscale_limit_face))
298
+
299
+ eyes_roi = self._detect_eyes_in_roi(roi_small)
300
+ eyes_roi = [(int(a / s_roi), int(b / s_roi), int(c / s_roi), int(d / s_roi)) for (a, b, c, d) in eyes_roi]
301
+ labs = _best_pair(eyes_roi, W, roi.shape[0])
302
+ origin = "roi" if labs else None
303
+
304
+ eyes_full = []
305
+ if self.cfg.eye_fallback_to_face and (not labs):
306
+ eyes_full = self._detect_eyes_in_roi(face_small)
307
+ eyes_full = [(int(a / s_face), int(b / s_face), int(c / s_face), int(d / s_face)) for (a, b, c, d) in eyes_full]
308
+ if len(eyes_full) >= 2:
309
+ labs = _best_pair(eyes_full, W, H)
310
+ origin = "face" if labs else origin
311
+
312
+ if not labs:
313
+ cand = eyes_roi
314
+ cand_origin = "roi"
315
+ if self.cfg.eye_fallback_to_face and len(eyes_full) >= 1:
316
+ cand = eyes_full
317
+ cand_origin = "face"
318
+ if len(cand) >= 2:
319
+ top2 = sorted(cand, key=lambda b: (b[2] - b[0]) * (b[3] - b[1]), reverse=True)[:2]
320
+ top2 = sorted(top2, key=lambda b: (b[0] + b[2]))
321
+ labs = [("left", top2[0]), ("right", top2[1])]
322
+ origin = cand_origin
323
+ elif len(cand) == 1:
324
+ labs = [("left", cand[0])]
325
+ origin = cand_origin
326
+
327
+ eyes_crop = None
328
+ if labs:
329
+ src_img = roi if origin == "roi" else face
330
+ bound_h = roi.shape[0] if origin == "roi" else H
331
+
332
+ boxes_only = [b for _, b in labs]
333
+ # union of eye boxes -> single eyes crop (works for the "eyes" view encoder)
334
+ ux1 = min(b[0] for b in boxes_only)
335
+ uy1 = min(b[1] for b in boxes_only)
336
+ ux2 = max(b[2] for b in boxes_only)
337
+ uy2 = max(b[3] for b in boxes_only)
338
+ ex1, ey1, ex2, ey2 = _expand((ux1, uy1, ux2, uy2), float(self.cfg.eye_margin), W, bound_h)
339
+ crop = src_img[ey1:ey2, ex1:ex2]
340
+ if crop.size > 0 and min(crop.shape[0], crop.shape[1]) >= int(self.cfg.eye_min_size):
341
+ eyes_crop = crop.copy()
342
+
343
+ return face, eyes_crop
344
+
345
+
checkpoints_style/per_artist_prototypes_90_10_full.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24476540fe0a5b4a169f52cc0c89842921ed133efdd3f5ea161cc6cad98ca7f9
3
+ size 8124525
checkpoints_style/stage3_epoch24.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62ce08323ed10bb27acf42db4a8821f22ba5676a1a844a481513c8e68ea55e65
3
+ size 60103197
packages.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ libgl1
2
+ libglib2.0-0
requirements.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ numpy>=1.25.2,<2
2
+ pillow
3
+ pyyaml
4
+ tqdm
5
+
6
+ torch
7
+ torchvision
8
+
9
+ opencv-python-headless
10
+
11
+ gradio==4.29.0
12
+ gradio_client==0.16.1
webui_gradio.py ADDED
@@ -0,0 +1,446 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import argparse
4
+ import os
5
+ from dataclasses import dataclass
6
+ from pathlib import Path
7
+ from typing import List, Optional, Tuple
8
+
9
+ import numpy as np
10
+ import torch
11
+ from PIL import Image
12
+
13
+ def _patch_fastapi_starlette_middleware_unpack() -> None:
14
+ """
15
+ Work around FastAPI/Starlette version mismatches where Starlette's Middleware
16
+ iterates as (cls, args, kwargs) but FastAPI expects (cls, options).
17
+
18
+ The user reported: ValueError: too many values to unpack (expected 2)
19
+ in fastapi.applications.FastAPI.build_middleware_stack.
20
+ """
21
+ try:
22
+ import fastapi.applications as fa
23
+ from starlette.middleware import Middleware as StarletteMiddleware
24
+ except Exception:
25
+ return
26
+
27
+ # Idempotent: don't patch multiple times.
28
+ if getattr(fa.FastAPI.build_middleware_stack, "_aec_patched", False):
29
+ return
30
+
31
+ orig = fa.FastAPI.build_middleware_stack
32
+
33
+ def patched_build_middleware_stack(self): # noqa: ANN001
34
+ # Mostly copied from FastAPI, but with robust handling of Middleware objects.
35
+ debug = self.debug
36
+ error_handler = None
37
+ exception_handlers = {}
38
+ if self.exception_handlers:
39
+ exception_handlers = self.exception_handlers
40
+ error_handler = exception_handlers.get(500) or exception_handlers.get(Exception)
41
+
42
+ from starlette.middleware.errors import ServerErrorMiddleware
43
+ from starlette.middleware.exceptions import ExceptionMiddleware
44
+ from fastapi.middleware.asyncexitstack import AsyncExitStackMiddleware
45
+
46
+ middleware = (
47
+ [StarletteMiddleware(ServerErrorMiddleware, handler=error_handler, debug=debug)]
48
+ + self.user_middleware
49
+ + [
50
+ StarletteMiddleware(ExceptionMiddleware, handlers=exception_handlers, debug=debug),
51
+ StarletteMiddleware(AsyncExitStackMiddleware),
52
+ ]
53
+ )
54
+
55
+ app = self.router
56
+ for m in reversed(middleware):
57
+ # Starlette Middleware object
58
+ if hasattr(m, "cls") and hasattr(m, "args") and hasattr(m, "kwargs"):
59
+ app = m.cls(app=app, *list(m.args), **dict(m.kwargs))
60
+ continue
61
+
62
+ # Old-style tuple/list
63
+ if isinstance(m, (tuple, list)):
64
+ if len(m) == 2:
65
+ cls, options = m
66
+ app = cls(app=app, **options)
67
+ continue
68
+ if len(m) == 3:
69
+ cls, args, kwargs = m
70
+ app = cls(app=app, *list(args), **dict(kwargs))
71
+ continue
72
+
73
+ # Fallback to original behavior for unexpected types
74
+ return orig(self)
75
+
76
+ return app
77
+
78
+ patched_build_middleware_stack._aec_patched = True # type: ignore[attr-defined]
79
+ fa.FastAPI.build_middleware_stack = patched_build_middleware_stack
80
+
81
+
82
+ _patch_fastapi_starlette_middleware_unpack()
83
+
84
+ import gradio as gr
85
+
86
+ def _patch_gradio_client_bool_jsonschema() -> None:
87
+ """
88
+ Work around gradio_client JSON-schema parsing bug where it assumes schema is a dict,
89
+ but JSON Schema allows booleans for additionalProperties (true/false).
90
+
91
+ Error seen:
92
+ TypeError: argument of type 'bool' is not iterable
93
+ in gradio_client/utils.py:get_type -> if "const" in schema:
94
+ """
95
+ try:
96
+ import gradio_client.utils as gcu
97
+ except Exception:
98
+ return
99
+
100
+ # Idempotent: patch once.
101
+ if getattr(getattr(gcu, "get_type", None), "_aec_patched", False):
102
+ return
103
+
104
+ orig_get_type = gcu.get_type
105
+
106
+ def patched_get_type(schema): # noqa: ANN001
107
+ if isinstance(schema, bool):
108
+ # additionalProperties: false/true
109
+ return "object"
110
+ if schema is None:
111
+ return "object"
112
+ if not isinstance(schema, dict):
113
+ return "object"
114
+ return orig_get_type(schema)
115
+
116
+ patched_get_type._aec_patched = True # type: ignore[attr-defined]
117
+ gcu.get_type = patched_get_type
118
+
119
+ # Also patch the deeper helper that assumes schema is always a dict.
120
+ orig_inner = getattr(gcu, "_json_schema_to_python_type", None)
121
+ if callable(orig_inner) and not getattr(orig_inner, "_aec_patched", False):
122
+ def patched_inner(schema, defs=None): # noqa: ANN001
123
+ # JSON Schema allows boolean schemas: https://json-schema.org/
124
+ if isinstance(schema, bool):
125
+ return "typing.Any"
126
+ if schema is None:
127
+ return "typing.Any"
128
+ if not isinstance(schema, dict):
129
+ return "typing.Any"
130
+ return orig_inner(schema, defs)
131
+
132
+ patched_inner._aec_patched = True # type: ignore[attr-defined]
133
+ gcu._json_schema_to_python_type = patched_inner
134
+
135
+
136
+ _patch_gradio_client_bool_jsonschema()
137
+
138
+ from app.model_io import LoadedModel, embed_triview, load_style_model
139
+ from app.proto_db import PrototypeDB, load_prototype_db, topk_predictions_unique_labels
140
+ from app.view_extractor import AnimeFaceEyeExtractor, ExtractorCfg
141
+
142
+
143
+ ROOT = Path(__file__).resolve().parent
144
+ CKPT_DIR = ROOT / "checkpoints_style"
145
+
146
+
147
+ def _list_pt_files(folder: Path) -> List[str]:
148
+ if not folder.exists():
149
+ return []
150
+ return [str(p) for p in sorted(folder.glob("*.pt"))]
151
+
152
+ def _list_ckpt_files(folder: Path) -> List[str]:
153
+ files = _list_pt_files(folder)
154
+ # heuristics: training checkpoints usually look like "stageX_epochY.pt"
155
+ ckpts = [f for f in files if "stage" in Path(f).name.lower() and "epoch" in Path(f).name.lower()]
156
+ return ckpts if ckpts else files
157
+
158
+
159
+ def _list_proto_files(folder: Path) -> List[str]:
160
+ files = _list_pt_files(folder)
161
+ # heuristics: prototype db files usually contain "proto" in filename
162
+ protos = [f for f in files if "proto" in Path(f).name.lower()]
163
+ return protos if protos else files
164
+
165
+
166
+ def _guess_default_ckpt(files: List[str]) -> Optional[str]:
167
+ # prefer stage3_epoch24.pt if present
168
+ for f in files:
169
+ if Path(f).name.lower() == "stage3_epoch24.pt":
170
+ return f
171
+ return files[-1] if files else None
172
+
173
+
174
+ def _guess_default_proto(files: List[str]) -> Optional[str]:
175
+ # Prefer the strict 90/10 prototype DB if present.
176
+ for f in files:
177
+ if Path(f).name.lower() == "per_artist_prototypes_90_10_full.pt":
178
+ return f
179
+ # Otherwise, try to prefer a file with "proto" in name
180
+ for f in files:
181
+ if "proto" in Path(f).name.lower():
182
+ return f
183
+ return files[0] if files else None
184
+
185
+
186
+ def _pil_to_tensor(im: Image.Image, T) -> torch.Tensor:
187
+ # `T` is torchvision transform pipeline from train_style_ddp.make_val_transforms
188
+ return T(im.convert("RGB"))
189
+
190
+
191
+ @dataclass
192
+ class State:
193
+ lm: Optional[LoadedModel] = None
194
+ ckpt_path: Optional[str] = None
195
+ db: Optional[PrototypeDB] = None
196
+ proto_path: Optional[str] = None
197
+ extractor: Optional[AnimeFaceEyeExtractor] = None
198
+
199
+
200
+ APP_STATE = State()
201
+
202
+
203
+ def load_all(ckpt_path: str, proto_path: str, device: str) -> str:
204
+ if not ckpt_path:
205
+ return "❌ No checkpoint selected."
206
+ if not proto_path:
207
+ return "❌ No prototype DB selected."
208
+ try:
209
+ lm = load_style_model(ckpt_path, device=device)
210
+ db = load_prototype_db(proto_path, try_dataset_dir=str(ROOT / "dataset"))
211
+ except Exception as e:
212
+ return f"❌ Load failed: {e}"
213
+
214
+ if db.dim != lm.embed_dim:
215
+ return f"❌ Dim mismatch: model embed_dim={lm.embed_dim} but prototypes dim={db.dim}"
216
+
217
+ APP_STATE.lm = lm
218
+ APP_STATE.ckpt_path = ckpt_path
219
+ APP_STATE.db = db
220
+ APP_STATE.proto_path = proto_path
221
+
222
+ # initialize view extractor (whole -> face/eyes) with defaults
223
+ try:
224
+ cfg = ExtractorCfg(
225
+ yolo_dir=ROOT / "yolov5_anime",
226
+ weights=ROOT / "yolov5x_anime.pt",
227
+ cascade=ROOT / "anime-eyes-cascade.xml",
228
+ yolo_device=("0" if torch.cuda.is_available() else "cpu"),
229
+ )
230
+ APP_STATE.extractor = AnimeFaceEyeExtractor(cfg)
231
+ except Exception:
232
+ APP_STATE.extractor = None
233
+
234
+ return f"✅ Loaded checkpoint `{Path(ckpt_path).name}` (stage={lm.stage_i}) and proto DB `{Path(proto_path).name}` (N={db.centers.shape[0]})"
235
+
236
+
237
+ def classify(
238
+ whole_img,
239
+ topk: int,
240
+ ):
241
+ """
242
+ Classify using auto-extracted face/eyes from whole image.
243
+ Returns: status, table_rows, face_preview, eyes_preview
244
+ """
245
+ if APP_STATE.lm is None or APP_STATE.db is None:
246
+ return "❌ Click **Load** first.", [], None, None
247
+
248
+ lm = APP_STATE.lm
249
+ db = APP_STATE.db
250
+ ex = APP_STATE.extractor
251
+
252
+ def _to_pil(x):
253
+ if x is None:
254
+ return None
255
+ if isinstance(x, Image.Image):
256
+ return x
257
+ return Image.fromarray(x)
258
+
259
+ w = _to_pil(whole_img)
260
+ if w is None:
261
+ return "❌ Provide a whole image.", [], None, None
262
+
263
+ try:
264
+ face_pil = None
265
+ eyes_pil = None
266
+ if ex is not None:
267
+ rgb = np.array(w.convert("RGB"))
268
+ face_rgb, eyes_rgb = ex.extract(rgb)
269
+ if face_rgb is not None:
270
+ face_pil = Image.fromarray(face_rgb)
271
+ if eyes_rgb is not None:
272
+ eyes_pil = Image.fromarray(eyes_rgb)
273
+
274
+ wt = _pil_to_tensor(w, lm.T_w)
275
+ ft = _pil_to_tensor(face_pil, lm.T_f) if face_pil is not None else None
276
+ et = _pil_to_tensor(eyes_pil, lm.T_e) if eyes_pil is not None else None
277
+ z = embed_triview(lm, whole=wt, face=ft, eyes=et)
278
+ preds = topk_predictions_unique_labels(db, z, topk=int(topk))
279
+ except Exception as ex:
280
+ return f"❌ Inference failed: {ex}", [], None, None
281
+
282
+ rows = [[name, float(score)] for (name, score) in preds]
283
+ return "✅ OK", rows, (face_pil if "face_pil" in locals() else None), (eyes_pil if "eyes_pil" in locals() else None)
284
+
285
+
286
+ def add_prototype(
287
+ label_name: str,
288
+ images: List,
289
+ save_back: bool,
290
+ ) -> str:
291
+ if APP_STATE.lm is None or APP_STATE.db is None:
292
+ return "❌ Click **Load** first."
293
+ lm = APP_STATE.lm
294
+ db = APP_STATE.db
295
+ ex = APP_STATE.extractor
296
+
297
+ label_name = (label_name or "").strip()
298
+ if not label_name:
299
+ return "❌ Label name is required."
300
+ if not images:
301
+ return "❌ Upload at least 1 image."
302
+
303
+ zs: List[torch.Tensor] = []
304
+ for x in images:
305
+ try:
306
+ im = x if isinstance(x, Image.Image) else Image.fromarray(x)
307
+ face_pil = None
308
+ eyes_pil = None
309
+ if ex is not None:
310
+ rgb = np.array(im.convert("RGB"))
311
+ face_rgb, eyes_rgb = ex.extract(rgb)
312
+ if face_rgb is not None:
313
+ face_pil = Image.fromarray(face_rgb)
314
+ if eyes_rgb is not None:
315
+ eyes_pil = Image.fromarray(eyes_rgb)
316
+
317
+ wt = _pil_to_tensor(im, lm.T_w)
318
+ ft = _pil_to_tensor(face_pil, lm.T_f) if face_pil is not None else None
319
+ et = _pil_to_tensor(eyes_pil, lm.T_e) if eyes_pil is not None else None
320
+ z = embed_triview(lm, whole=wt, face=ft, eyes=et)
321
+ zs.append(z)
322
+ except Exception:
323
+ continue
324
+
325
+ if not zs:
326
+ return "❌ Could not embed any uploaded images."
327
+
328
+ center = torch.stack(zs, dim=0).mean(dim=0)
329
+ lid = db.add_center(label_name, center)
330
+
331
+ msg = f"✅ Added prototype for `{label_name}` (label_id={lid}). DB now N={db.centers.shape[0]}."
332
+
333
+ if save_back:
334
+ out_path = db.save(APP_STATE.proto_path)
335
+ msg += f" Saved to `{out_path}`."
336
+ return msg
337
+
338
+
339
+ def save_db_as(path_text: str) -> str:
340
+ if APP_STATE.db is None:
341
+ return "❌ Nothing loaded."
342
+ out = (path_text or "").strip()
343
+ if not out:
344
+ return "❌ Provide an output path."
345
+ out_path = Path(out)
346
+ if not out_path.is_absolute():
347
+ out_path = (CKPT_DIR / out_path).resolve()
348
+ APP_STATE.db.save(out_path)
349
+ APP_STATE.proto_path = str(out_path)
350
+ return f"✅ Saved prototype DB to `{out_path}`"
351
+
352
+
353
+ def build_ui() -> gr.Blocks:
354
+ ckpts = _list_ckpt_files(CKPT_DIR)
355
+ protos = _list_proto_files(CKPT_DIR)
356
+
357
+ with gr.Blocks(title="ArtistEmbeddingClassifier") as demo:
358
+ gr.Markdown("### ArtistEmbeddingClassifier — Gradio UI\nLoads checkpoint + prototype DB from `./checkpoints_style/`.")
359
+
360
+ with gr.Row():
361
+ ckpt_dd = gr.Dropdown(choices=ckpts, value=_guess_default_ckpt(ckpts), label="Checkpoint (.pt)")
362
+ proto_dd = gr.Dropdown(choices=protos, value=_guess_default_proto(protos), label="Prototype DB (.pt)")
363
+ device_dd = gr.Dropdown(choices=["auto", "cpu"], value="auto", label="Device")
364
+ load_btn = gr.Button("Load", variant="primary")
365
+
366
+ status = gr.Markdown("")
367
+ load_btn.click(load_all, inputs=[ckpt_dd, proto_dd, device_dd], outputs=[status])
368
+
369
+ with gr.Tab("Classify"):
370
+ with gr.Row():
371
+ whole = gr.Image(label="Whole image (required)", type="pil")
372
+ face_prev = gr.Image(label="Extracted face (auto)", type="pil")
373
+ eyes_prev = gr.Image(label="Extracted eyes (auto)", type="pil")
374
+ with gr.Row():
375
+ topk = gr.Slider(1, 20, value=5, step=1, label="Top-K")
376
+ run_btn = gr.Button("Run", variant="primary")
377
+
378
+ out_status = gr.Markdown("")
379
+ table = gr.Dataframe(headers=["label", "cosine_sim"], datatype=["str", "number"], interactive=False)
380
+ run_btn.click(classify, inputs=[whole, topk], outputs=[out_status, table, face_prev, eyes_prev])
381
+
382
+ with gr.Tab("Add prototype"):
383
+ gr.Markdown(
384
+ "Add a new prototype to the loaded prototype DB by averaging embeddings of uploaded whole images.\n"
385
+ "Multiple prototypes per label are allowed."
386
+ )
387
+ label = gr.Textbox(label="Label name (artist)", placeholder="e.g. new_artist")
388
+ imgs = gr.Gallery(label="Whole images (1+)", columns=4, rows=2, height=240, allow_preview=True)
389
+ uploader = gr.Files(label="Upload image files (whole)", file_types=["image"], file_count="multiple")
390
+ save_back = gr.Checkbox(value=True, label="Save back to selected prototype DB file after adding")
391
+ add_btn = gr.Button("Add prototype", variant="primary")
392
+ add_status = gr.Markdown("")
393
+
394
+ def _files_to_gallery(files):
395
+ if not files:
396
+ return []
397
+ out = []
398
+ for f in files:
399
+ try:
400
+ im = Image.open(f.name).convert("RGB")
401
+ out.append(im)
402
+ except Exception:
403
+ continue
404
+ return out
405
+
406
+ uploader.change(_files_to_gallery, inputs=[uploader], outputs=[imgs])
407
+ add_btn.click(add_prototype, inputs=[label, imgs, save_back], outputs=[add_status])
408
+
409
+ gr.Markdown("Save DB as (optional):")
410
+ save_path = gr.Textbox(label="Output path (relative paths go under ./checkpoints_style/)", placeholder="prototypes_custom.pt")
411
+ save_btn = gr.Button("Save As")
412
+ save_btn.click(save_db_as, inputs=[save_path], outputs=[add_status])
413
+
414
+ return demo
415
+
416
+
417
+ if __name__ == "__main__":
418
+ CKPT_DIR.mkdir(parents=True, exist_ok=True)
419
+ demo = build_ui()
420
+
421
+ ap = argparse.ArgumentParser(description="ArtistEmbeddingClassifier Gradio UI")
422
+ # Hugging Face Spaces runs behind a proxy and expects binding to 0.0.0.0:$PORT.
423
+ default_host = os.getenv("GRADIO_SERVER_NAME")
424
+ if not default_host:
425
+ default_host = "0.0.0.0" if os.getenv("SPACE_ID") or os.getenv("HF_SPACE") else "127.0.0.1"
426
+ default_port = int(os.getenv("PORT") or os.getenv("GRADIO_SERVER_PORT") or "7860")
427
+
428
+ ap.add_argument("--host", type=str, default=default_host)
429
+ ap.add_argument("--port", type=int, default=default_port)
430
+ ap.add_argument("--share", action="store_true", help="Create a public share link")
431
+ args = ap.parse_args()
432
+
433
+ # Re-apply patch right before launching (in case import order changed).
434
+ _patch_fastapi_starlette_middleware_unpack()
435
+
436
+ try:
437
+ demo.launch(server_name=args.host, server_port=args.port, show_api=False, share=args.share)
438
+ except ValueError as e:
439
+ # Some environments block localhost checks; fall back to share link.
440
+ msg = str(e)
441
+ if "localhost is not accessible" in msg and not args.share:
442
+ demo.launch(server_name=args.host, server_port=args.port, show_api=False, share=True)
443
+ else:
444
+ raise
445
+
446
+
yolov5_anime/.dockerignore ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
2
+ # .git
3
+ .cache
4
+ .idea
5
+ runs
6
+ output
7
+ coco
8
+ storage.googleapis.com
9
+
10
+ data/samples/*
11
+ **/results*.txt
12
+ *.jpg
13
+
14
+ # Neural Network weights -----------------------------------------------------------------------------------------------
15
+ **/*.weights
16
+ **/*.pt
17
+ **/*.pth
18
+ **/*.onnx
19
+ **/*.mlmodel
20
+ **/*.torchscript
21
+
22
+
23
+ # Below Copied From .gitignore -----------------------------------------------------------------------------------------
24
+ # Below Copied From .gitignore -----------------------------------------------------------------------------------------
25
+
26
+
27
+ # GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
28
+ # Byte-compiled / optimized / DLL files
29
+ __pycache__/
30
+ *.py[cod]
31
+ *$py.class
32
+
33
+ # C extensions
34
+ *.so
35
+
36
+ # Distribution / packaging
37
+ .Python
38
+ env/
39
+ build/
40
+ develop-eggs/
41
+ dist/
42
+ downloads/
43
+ eggs/
44
+ .eggs/
45
+ lib/
46
+ lib64/
47
+ parts/
48
+ sdist/
49
+ var/
50
+ wheels/
51
+ *.egg-info/
52
+ .installed.cfg
53
+ *.egg
54
+
55
+ # PyInstaller
56
+ # Usually these files are written by a python script from a template
57
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
58
+ *.manifest
59
+ *.spec
60
+
61
+ # Installer logs
62
+ pip-log.txt
63
+ pip-delete-this-directory.txt
64
+
65
+ # Unit test / coverage reports
66
+ htmlcov/
67
+ .tox/
68
+ .coverage
69
+ .coverage.*
70
+ .cache
71
+ nosetests.xml
72
+ coverage.xml
73
+ *.cover
74
+ .hypothesis/
75
+
76
+ # Translations
77
+ *.mo
78
+ *.pot
79
+
80
+ # Django stuff:
81
+ *.log
82
+ local_settings.py
83
+
84
+ # Flask stuff:
85
+ instance/
86
+ .webassets-cache
87
+
88
+ # Scrapy stuff:
89
+ .scrapy
90
+
91
+ # Sphinx documentation
92
+ docs/_build/
93
+
94
+ # PyBuilder
95
+ target/
96
+
97
+ # Jupyter Notebook
98
+ .ipynb_checkpoints
99
+
100
+ # pyenv
101
+ .python-version
102
+
103
+ # celery beat schedule file
104
+ celerybeat-schedule
105
+
106
+ # SageMath parsed files
107
+ *.sage.py
108
+
109
+ # dotenv
110
+ .env
111
+
112
+ # virtualenv
113
+ .venv
114
+ venv/
115
+ ENV/
116
+
117
+ # Spyder project settings
118
+ .spyderproject
119
+ .spyproject
120
+
121
+ # Rope project settings
122
+ .ropeproject
123
+
124
+ # mkdocs documentation
125
+ /site
126
+
127
+ # mypy
128
+ .mypy_cache/
129
+
130
+
131
+ # https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
132
+
133
+ # General
134
+ .DS_Store
135
+ .AppleDouble
136
+ .LSOverride
137
+
138
+ # Icon must end with two \r
139
+ Icon
140
+ Icon?
141
+
142
+ # Thumbnails
143
+ ._*
144
+
145
+ # Files that might appear in the root of a volume
146
+ .DocumentRevisions-V100
147
+ .fseventsd
148
+ .Spotlight-V100
149
+ .TemporaryItems
150
+ .Trashes
151
+ .VolumeIcon.icns
152
+ .com.apple.timemachine.donotpresent
153
+
154
+ # Directories potentially created on remote AFP share
155
+ .AppleDB
156
+ .AppleDesktop
157
+ Network Trash Folder
158
+ Temporary Items
159
+ .apdisk
160
+
161
+
162
+ # https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
163
+ # Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
164
+ # Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
165
+
166
+ # User-specific stuff:
167
+ .idea/*
168
+ .idea/**/workspace.xml
169
+ .idea/**/tasks.xml
170
+ .idea/dictionaries
171
+ .html # Bokeh Plots
172
+ .pg # TensorFlow Frozen Graphs
173
+ .avi # videos
174
+
175
+ # Sensitive or high-churn files:
176
+ .idea/**/dataSources/
177
+ .idea/**/dataSources.ids
178
+ .idea/**/dataSources.local.xml
179
+ .idea/**/sqlDataSources.xml
180
+ .idea/**/dynamic.xml
181
+ .idea/**/uiDesigner.xml
182
+
183
+ # Gradle:
184
+ .idea/**/gradle.xml
185
+ .idea/**/libraries
186
+
187
+ # CMake
188
+ cmake-build-debug/
189
+ cmake-build-release/
190
+
191
+ # Mongo Explorer plugin:
192
+ .idea/**/mongoSettings.xml
193
+
194
+ ## File-based project format:
195
+ *.iws
196
+
197
+ ## Plugin-specific files:
198
+
199
+ # IntelliJ
200
+ out/
201
+
202
+ # mpeltonen/sbt-idea plugin
203
+ .idea_modules/
204
+
205
+ # JIRA plugin
206
+ atlassian-ide-plugin.xml
207
+
208
+ # Cursive Clojure plugin
209
+ .idea/replstate.xml
210
+
211
+ # Crashlytics plugin (for Android Studio and IntelliJ)
212
+ com_crashlytics_export_strings.xml
213
+ crashlytics.properties
214
+ crashlytics-build.properties
215
+ fabric.properties
yolov5_anime/.gitattributes ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ # this drop notebooks from GitHub language stats
2
+ *.ipynb linguist-vendored
yolov5_anime/LICENSE ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <https://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <https://www.gnu.org/licenses/why-not-lgpl.html>.
yolov5_anime/README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # yolov5_anime
2
+ An anime face detector based on [yolov5](https://github.com/ultralytics/yolov5).
3
+
4
+ The training set used contains 5845 manually selected and annotated anime pictures from pixiv. The test set encompasses 655 randomly selected pictures from the [daily rankings on pixiv](https://www.pixiv.net/ranking.php).
5
+
6
+ Two separate models based on the configuration of yolov5x and yolov5s respectively are provided. Performance distinctions can be found in the [demo](#Demo) section.
7
+
8
+ ## Requirements
9
+ Python 3.8 or later with all [requirements.txt](https://github.com/zymk9/yolov5_anime/blob/master/requirements.txt) dependencies installed.
10
+
11
+ ## Usage
12
+ 1. Clone the repository and run install requirements. **Beware that the weights and models provided here may be only compatible to the [yolov5 2.0 release](https://github.com/ultralytics/yolov5/releases/tag/v2.0).**
13
+
14
+ Update: the models are still compatible with [release 3.0](https://github.com/ultralytics/yolov5/releases/tag/v3.0)
15
+ ```bash
16
+ $ git clone https://github.com/zymk9/yolov5_anime.git
17
+ $ cd yolov5_anime
18
+ $ pip install -qr requirements.txt # install dependencies
19
+ ```
20
+ 2. Retrieve yolov5x weights from [Google Drive](https://drive.google.com/file/d/1-MO9RYPZxnBfpNiGY6GdsqCeQWYNxBdl/view?usp=sharing) or use the following code.
21
+ ```python
22
+ # retrieve weights for model based on yolov5x
23
+ from utils.google_utils import gdrive_download
24
+ gdrive_download('1-MO9RYPZxnBfpNiGY6GdsqCeQWYNxBdl','yolov5x_anime.pt')
25
+ ```
26
+ The weights for yolov5s can be found in the [weights](https://github.com/zymk9/yolov5_anime/tree/master/weights) folder.
27
+ 3. Run detection on your data.
28
+ ```bash
29
+ $ python detect.py --weights path/to/model --source path/to/images --output path/to/output/folder
30
+ ```
31
+ You can also set `--conf-thres` and `--iou-thres`, or enable test time augmentation using `--augment` (no significant performance gain on test set). Refer to [detect.py](https://github.com/zymk9/yolov5_anime/blob/master/detect.py) for more arguments.
32
+
33
+ For yolov5x, the recommended and default threshold for confidence is 0.8 if high resolution faces are desidered. However, if you want to detect more varieties, scales or angles of faces, 0.5 can be a reasonable value.
34
+
35
+ For yolov5s, you may need to lower `--conf-thres` to 0.5.
36
+
37
+ ## Demo
38
+ The performance on test set using [test.py](https://github.com/zymk9/yolov5_anime/blob/master/test.py) with `--conf-thres=0.5 --ious-thres=0.5`
39
+ ```
40
+ performance of yolov5x_anime
41
+ --------------------------------------------------------------------------------------------------
42
+ Images Targets P R [email protected] [email protected]:.95
43
+ 655 873 0.964 0.95 0.947 0.518
44
+
45
+ Speed: 22.6/1.5/24.1 ms inference/NMS/total per 640x640 image at batch-size 32, using a Tesla P100
46
+ --------------------------------------------------------------------------------------------------
47
+
48
+ performance of yolov5s_anime
49
+ --------------------------------------------------------------------------------------------------
50
+ Images Targets P R [email protected] [email protected]:.95
51
+ 655 873 0.959 0.955 0.953 0.582
52
+
53
+ Speed: 3.4/1.3/4.6 ms inference/NMS/total per 640x640 image at batch-size 32, using a Tesla P100
54
+ --------------------------------------------------------------------------------------------------
55
+ ```
56
+ The performances are comparible. However, with a higher confidence threshold, yolov5x can significantly outperform yolov5s.
57
+
58
+ The model works with multi-scale, multi-view faces, including manga and other styles. Pictures are taken from yolov5x output.
59
+
60
+ ![anime_example2](./inference/output/anime2.jpg)
61
+ Origin: [【PFT】-月華祭-](https://www.pixiv.net/artworks/55817439) by [swd3e2](https://www.pixiv.net/users/660788)
62
+ ![anime_example3](./inference/output/anime3.jpg)
63
+ Origin: [新年愉悦](https://www.pixiv.net/artworks/67321023) by [Liduke(日子)](https://www.pixiv.net/users/38088)
64
+ ![anime_example4](./inference/output/anime4.jpg)
65
+ Origin: [Tales of abyss Only cover](https://www.pixiv.net/artworks/66546900) by [Liduke(日子)](https://www.pixiv.net/users/38088)
66
+ ![anime_example5](./inference/output/anime5.png)
67
+ Origin: [いつものふたり](https://www.pixiv.net/artworks/82867235) by [うにょーん](https://www.pixiv.net/users/123423)
68
+ ![anime_example6](./inference/output/manga0.jpg)
69
+ Origin: *an omnipresence in wired/『lain』 安倍吉俊画集 オムニプレゼンス* by 安倍 吉俊
70
+
71
+ ## Training
72
+ An official toturial from Ultralytics can be found [here](https://github.com/ultralytics/yolov5/issues/12) if you want to train your own model.
73
+
74
+ The yolov5x_anime was trained for about 40h on a single Tesla P100 for 326 epochs, using SGD and without multi-scale training. The script is following
75
+ ```bash
76
+ $ python train.py --hyp ./data/hyp.finetune.yaml --single-cls --cache-images --batch-size 16 --epochs 360 --data ./data/anime.yaml --cfg ./models/yolov5x.yaml --weights yolov5x.pt
77
+ ```
78
+
79
+ The model of yolov5s_anime underwent 480 epochs in 14h, using `--adam` and `--multi-scale`.
80
+
81
+
yolov5_anime/README.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ Optional: clone YOLOv5-anime repo here and place weights at project root (e.g., ./yolov5x_anime.pt).
2
+ If not provided, the app will still run using the whole image (and any existing face/eyes).
yolov5_anime/data/anime.yaml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ train: ../anime/images/train
2
+ val: ../anime/images/val
3
+
4
+ nc: 1
5
+
6
+ names: ['face']
yolov5_anime/data/coco.yaml ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # COCO 2017 dataset http://cocodataset.org
2
+ # Train command: python train.py --data coco.yaml
3
+ # Default dataset location is next to /yolov5:
4
+ # /parent_folder
5
+ # /coco
6
+ # /yolov5
7
+
8
+
9
+ # download command/URL (optional)
10
+ download: bash data/scripts/get_coco.sh
11
+
12
+ # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
13
+ train: ../coco/train2017.txt # 118287 images
14
+ val: ../coco/val2017.txt # 5000 images
15
+ test: ../coco/test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
16
+
17
+ # number of classes
18
+ nc: 80
19
+
20
+ # class names
21
+ names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
22
+ 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
23
+ 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
24
+ 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
25
+ 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
26
+ 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
27
+ 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
28
+ 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
29
+ 'hair drier', 'toothbrush']
30
+
31
+ # Print classes
32
+ # with open('data/coco.yaml') as f:
33
+ # d = yaml.load(f, Loader=yaml.FullLoader) # dict
34
+ # for i, x in enumerate(d['names']):
35
+ # print(i, x)
yolov5_anime/data/coco128.yaml ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # COCO 2017 dataset http://cocodataset.org - first 128 training images
2
+ # Train command: python train.py --data coco128.yaml
3
+ # Default dataset location is next to /yolov5:
4
+ # /parent_folder
5
+ # /coco128
6
+ # /yolov5
7
+
8
+
9
+ # download command/URL (optional)
10
+ download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip
11
+
12
+ # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
13
+ train: ../coco128/images/train2017/ # 128 images
14
+ val: ../coco128/images/train2017/ # 128 images
15
+
16
+ # number of classes
17
+ nc: 80
18
+
19
+ # class names
20
+ names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
21
+ 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
22
+ 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
23
+ 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
24
+ 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
25
+ 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
26
+ 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
27
+ 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
28
+ 'hair drier', 'toothbrush']
yolov5_anime/data/hyp.finetune.yaml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Hyperparameters for VOC fine-tuning
2
+ # python train.py --batch 64 --cfg '' --weights yolov5m.pt --data voc.yaml --img 512 --epochs 50
3
+ # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
4
+
5
+
6
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7
+ momentum: 0.937 # SGD momentum/Adam beta1
8
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
9
+ giou: 0.05 # GIoU loss gain
10
+ cls: 0.5 # cls loss gain
11
+ cls_pw: 1.0 # cls BCELoss positive_weight
12
+ obj: 1.0 # obj loss gain (scale with pixels)
13
+ obj_pw: 1.0 # obj BCELoss positive_weight
14
+ iou_t: 0.20 # IoU training threshold
15
+ anchor_t: 4.0 # anchor-multiple threshold
16
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
17
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
18
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
19
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
20
+ degrees: 0.0 # image rotation (+/- deg)
21
+ translate: 0.5 # image translation (+/- fraction)
22
+ scale: 0.5 # image scale (+/- gain)
23
+ shear: 0.0 # image shear (+/- deg)
24
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
25
+ flipud: 0.0 # image flip up-down (probability)
26
+ fliplr: 0.5 # image flip left-right (probability)
27
+ mixup: 0.0 # image mixup (probability)
yolov5_anime/data/hyp.scratch.yaml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Hyperparameters for COCO training from scratch
2
+ # python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300
3
+ # See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
4
+
5
+
6
+ lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
7
+ momentum: 0.937 # SGD momentum/Adam beta1
8
+ weight_decay: 0.0005 # optimizer weight decay 5e-4
9
+ giou: 0.05 # GIoU loss gain
10
+ cls: 0.5 # cls loss gain
11
+ cls_pw: 1.0 # cls BCELoss positive_weight
12
+ obj: 1.0 # obj loss gain (scale with pixels)
13
+ obj_pw: 1.0 # obj BCELoss positive_weight
14
+ iou_t: 0.20 # IoU training threshold
15
+ anchor_t: 4.0 # anchor-multiple threshold
16
+ fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
17
+ hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
18
+ hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
19
+ hsv_v: 0.4 # image HSV-Value augmentation (fraction)
20
+ degrees: 0.0 # image rotation (+/- deg)
21
+ translate: 0.5 # image translation (+/- fraction)
22
+ scale: 0.5 # image scale (+/- gain)
23
+ shear: 0.0 # image shear (+/- deg)
24
+ perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
25
+ flipud: 0.0 # image flip up-down (probability)
26
+ fliplr: 0.5 # image flip left-right (probability)
27
+ mixup: 0.0 # image mixup (probability)
yolov5_anime/data/scripts/get_coco.sh ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # COCO 2017 dataset http://cocodataset.org
3
+ # Download command: bash data/scripts/get_coco.sh
4
+ # Train command: python train.py --data coco.yaml
5
+ # Default dataset location is next to /yolov5:
6
+ # /parent_folder
7
+ # /coco
8
+ # /yolov5
9
+
10
+ # Download/unzip labels
11
+ echo 'Downloading COCO 2017 labels ...'
12
+ d='../' # unzip directory
13
+ f='coco2017labels.zip' && curl -L https://github.com/ultralytics/yolov5/releases/download/v1.0/$f -o $f
14
+ unzip -q $f -d $d && rm $f
15
+
16
+ # Download/unzip images
17
+ echo 'Downloading COCO 2017 images ...'
18
+ d='../coco/images' # unzip directory
19
+ f='train2017.zip' && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f -d $d && rm $f # 19G, 118k images
20
+ f='val2017.zip' && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f -d $d && rm $f # 1G, 5k images
21
+ # f='test2017.zip' && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f -d $d && rm $f # 7G, 41k images
yolov5_anime/data/scripts/get_voc.sh ADDED
@@ -0,0 +1,212 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/bash
2
+ # PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
3
+ # Download command: bash data/scripts/get_voc.sh
4
+ # Train command: python train.py --data voc.yaml
5
+ # Default dataset location is next to /yolov5:
6
+ # /parent_folder
7
+ # /VOC
8
+ # /yolov5
9
+
10
+ start=$(date +%s)
11
+
12
+ # handle optional download dir
13
+ if [ -z "$1" ]; then
14
+ # navigate to ~/tmp
15
+ echo "navigating to ../tmp/ ..."
16
+ mkdir -p ../tmp
17
+ cd ../tmp/
18
+ else
19
+ # check if is valid directory
20
+ if [ ! -d $1 ]; then
21
+ echo $1 "is not a valid directory"
22
+ exit 0
23
+ fi
24
+ echo "navigating to" $1 "..."
25
+ cd $1
26
+ fi
27
+
28
+ echo "Downloading VOC2007 trainval ..."
29
+ # Download data
30
+ curl -LO http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
31
+ echo "Downloading VOC2007 test data ..."
32
+ curl -LO http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
33
+ echo "Done downloading."
34
+
35
+ # Extract data
36
+ echo "Extracting trainval ..."
37
+ tar -xf VOCtrainval_06-Nov-2007.tar
38
+ echo "Extracting test ..."
39
+ tar -xf VOCtest_06-Nov-2007.tar
40
+ echo "removing tars ..."
41
+ rm VOCtrainval_06-Nov-2007.tar
42
+ rm VOCtest_06-Nov-2007.tar
43
+
44
+ end=$(date +%s)
45
+ runtime=$((end - start))
46
+
47
+ echo "Completed in" $runtime "seconds"
48
+
49
+ start=$(date +%s)
50
+
51
+ # handle optional download dir
52
+ if [ -z "$1" ]; then
53
+ # navigate to ~/tmp
54
+ echo "navigating to ../tmp/ ..."
55
+ mkdir -p ../tmp
56
+ cd ../tmp/
57
+ else
58
+ # check if is valid directory
59
+ if [ ! -d $1 ]; then
60
+ echo $1 "is not a valid directory"
61
+ exit 0
62
+ fi
63
+ echo "navigating to" $1 "..."
64
+ cd $1
65
+ fi
66
+
67
+ echo "Downloading VOC2012 trainval ..."
68
+ # Download data
69
+ curl -LO http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
70
+ echo "Done downloading."
71
+
72
+ # Extract data
73
+ echo "Extracting trainval ..."
74
+ tar -xf VOCtrainval_11-May-2012.tar
75
+ echo "removing tar ..."
76
+ rm VOCtrainval_11-May-2012.tar
77
+
78
+ end=$(date +%s)
79
+ runtime=$((end - start))
80
+
81
+ echo "Completed in" $runtime "seconds"
82
+
83
+ cd ../tmp
84
+ echo "Spliting dataset..."
85
+ python3 - "$@" <<END
86
+ import xml.etree.ElementTree as ET
87
+ import pickle
88
+ import os
89
+ from os import listdir, getcwd
90
+ from os.path import join
91
+
92
+ sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
93
+
94
+ classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
95
+
96
+
97
+ def convert(size, box):
98
+ dw = 1./(size[0])
99
+ dh = 1./(size[1])
100
+ x = (box[0] + box[1])/2.0 - 1
101
+ y = (box[2] + box[3])/2.0 - 1
102
+ w = box[1] - box[0]
103
+ h = box[3] - box[2]
104
+ x = x*dw
105
+ w = w*dw
106
+ y = y*dh
107
+ h = h*dh
108
+ return (x,y,w,h)
109
+
110
+ def convert_annotation(year, image_id):
111
+ in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
112
+ out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
113
+ tree=ET.parse(in_file)
114
+ root = tree.getroot()
115
+ size = root.find('size')
116
+ w = int(size.find('width').text)
117
+ h = int(size.find('height').text)
118
+
119
+ for obj in root.iter('object'):
120
+ difficult = obj.find('difficult').text
121
+ cls = obj.find('name').text
122
+ if cls not in classes or int(difficult)==1:
123
+ continue
124
+ cls_id = classes.index(cls)
125
+ xmlbox = obj.find('bndbox')
126
+ b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
127
+ bb = convert((w,h), b)
128
+ out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
129
+
130
+ wd = getcwd()
131
+
132
+ for year, image_set in sets:
133
+ if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)):
134
+ os.makedirs('VOCdevkit/VOC%s/labels/'%(year))
135
+ image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
136
+ list_file = open('%s_%s.txt'%(year, image_set), 'w')
137
+ for image_id in image_ids:
138
+ list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))
139
+ convert_annotation(year, image_id)
140
+ list_file.close()
141
+
142
+ END
143
+
144
+ cat 2007_train.txt 2007_val.txt 2012_train.txt 2012_val.txt >train.txt
145
+ cat 2007_train.txt 2007_val.txt 2007_test.txt 2012_train.txt 2012_val.txt >train.all.txt
146
+
147
+ python3 - "$@" <<END
148
+
149
+ import shutil
150
+ import os
151
+ os.system('mkdir ../VOC/')
152
+ os.system('mkdir ../VOC/images')
153
+ os.system('mkdir ../VOC/images/train')
154
+ os.system('mkdir ../VOC/images/val')
155
+
156
+ os.system('mkdir ../VOC/labels')
157
+ os.system('mkdir ../VOC/labels/train')
158
+ os.system('mkdir ../VOC/labels/val')
159
+
160
+ import os
161
+ print(os.path.exists('../tmp/train.txt'))
162
+ f = open('../tmp/train.txt', 'r')
163
+ lines = f.readlines()
164
+
165
+ for line in lines:
166
+ #print(line.split('/')[-1][:-1])
167
+ line = "/".join(line.split('/')[2:])
168
+ #print(line)
169
+ if (os.path.exists("../" + line[:-1])):
170
+ os.system("cp ../"+ line[:-1] + " ../VOC/images/train")
171
+
172
+ print(os.path.exists('../tmp/train.txt'))
173
+ f = open('../tmp/train.txt', 'r')
174
+ lines = f.readlines()
175
+
176
+ for line in lines:
177
+ #print(line.split('/')[-1][:-1])
178
+ line = "/".join(line.split('/')[2:])
179
+ line = line.replace('JPEGImages', 'labels')
180
+ line = line.replace('jpg', 'txt')
181
+ #print(line)
182
+ if (os.path.exists("../" + line[:-1])):
183
+ os.system("cp ../"+ line[:-1] + " ../VOC/labels/train")
184
+
185
+ print(os.path.exists('../tmp/2007_test.txt'))
186
+ f = open('../tmp/2007_test.txt', 'r')
187
+ lines = f.readlines()
188
+
189
+ for line in lines:
190
+ #print(line.split('/')[-1][:-1])
191
+ line = "/".join(line.split('/')[2:])
192
+
193
+ if (os.path.exists("../" + line[:-1])):
194
+ os.system("cp ../"+ line[:-1] + " ../VOC/images/val")
195
+
196
+ print(os.path.exists('../tmp/2007_test.txt'))
197
+ f = open('../tmp/2007_test.txt', 'r')
198
+ lines = f.readlines()
199
+
200
+ for line in lines:
201
+ #print(line.split('/')[-1][:-1])
202
+ line = "/".join(line.split('/')[2:])
203
+ line = line.replace('JPEGImages', 'labels')
204
+ line = line.replace('jpg', 'txt')
205
+ #print(line)
206
+ if (os.path.exists("../" + line[:-1])):
207
+ os.system("cp ../"+ line[:-1] + " ../VOC/labels/val")
208
+
209
+ END
210
+
211
+ rm -rf ../tmp # remove temporary directory
212
+ echo "VOC download done."
yolov5_anime/data/voc.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
2
+ # Train command: python train.py --data voc.yaml
3
+ # Default dataset location is next to /yolov5:
4
+ # /parent_folder
5
+ # /VOC
6
+ # /yolov5
7
+
8
+
9
+ # download command/URL (optional)
10
+ download: bash data/scripts/get_voc.sh
11
+
12
+ # train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
13
+ train: ../VOC/images/train/ # 16551 images
14
+ val: ../VOC/images/val/ # 4952 images
15
+
16
+ # number of classes
17
+ nc: 20
18
+
19
+ # class names
20
+ names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
21
+ 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']
yolov5_anime/detect.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import platform
4
+ import shutil
5
+ import time
6
+ from pathlib import Path
7
+
8
+ import cv2
9
+ import torch
10
+ import torch.backends.cudnn as cudnn
11
+ from numpy import random
12
+
13
+ from models.experimental import attempt_load
14
+ from utils.datasets import LoadStreams, LoadImages
15
+ from utils.general import (
16
+ check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, plot_one_box, strip_optimizer)
17
+ from utils.torch_utils import select_device, load_classifier, time_synchronized
18
+
19
+
20
+ def detect(save_img=False):
21
+ out, source, weights, view_img, save_txt, imgsz = \
22
+ opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
23
+ webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
24
+
25
+ # Initialize
26
+ device = select_device(opt.device)
27
+ if os.path.exists(out):
28
+ shutil.rmtree(out) # delete output folder
29
+ os.makedirs(out) # make new output folder
30
+ half = device.type != 'cpu' # half precision only supported on CUDA
31
+
32
+ # Load model
33
+ model = attempt_load(weights, map_location=device) # load FP32 model
34
+ imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
35
+ if half:
36
+ model.half() # to FP16
37
+
38
+ # Second-stage classifier
39
+ classify = False
40
+ if classify:
41
+ modelc = load_classifier(name='resnet101', n=2) # initialize
42
+ modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights
43
+ modelc.to(device).eval()
44
+
45
+ # Set Dataloader
46
+ vid_path, vid_writer = None, None
47
+ if webcam:
48
+ view_img = True
49
+ cudnn.benchmark = True # set True to speed up constant image size inference
50
+ dataset = LoadStreams(source, img_size=imgsz)
51
+ else:
52
+ save_img = True
53
+ dataset = LoadImages(source, img_size=imgsz)
54
+
55
+ # Get names and colors
56
+ names = model.module.names if hasattr(model, 'module') else model.names
57
+ colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
58
+
59
+ # Run inference
60
+ t0 = time.time()
61
+ img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
62
+ _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
63
+ for path, img, im0s, vid_cap in dataset:
64
+ img = torch.from_numpy(img).to(device)
65
+ img = img.half() if half else img.float() # uint8 to fp16/32
66
+ img /= 255.0 # 0 - 255 to 0.0 - 1.0
67
+ if img.ndimension() == 3:
68
+ img = img.unsqueeze(0)
69
+
70
+ # Inference
71
+ t1 = time_synchronized()
72
+ pred = model(img, augment=opt.augment)[0]
73
+
74
+ # Apply NMS
75
+ pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
76
+ t2 = time_synchronized()
77
+
78
+ # Apply Classifier
79
+ if classify:
80
+ pred = apply_classifier(pred, modelc, img, im0s)
81
+
82
+ # Process detections
83
+ for i, det in enumerate(pred): # detections per image
84
+ if webcam: # batch_size >= 1
85
+ p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
86
+ else:
87
+ p, s, im0 = path, '', im0s
88
+
89
+ save_path = str(Path(out) / Path(p).name)
90
+ txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '')
91
+ s += '%gx%g ' % img.shape[2:] # print string
92
+ gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
93
+ if det is not None and len(det):
94
+ # Rescale boxes from img_size to im0 size
95
+ det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
96
+
97
+ # Print results
98
+ for c in det[:, -1].unique():
99
+ n = (det[:, -1] == c).sum() # detections per class
100
+ s += '%g %ss, ' % (n, names[int(c)]) # add to string
101
+
102
+ # Write results
103
+ for *xyxy, conf, cls in det:
104
+ if save_txt: # Write to file
105
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
106
+ with open(txt_path + '.txt', 'a') as f:
107
+ f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
108
+
109
+ if save_img or view_img: # Add bbox to image
110
+ label = '%s %.2f' % (names[int(cls)], conf)
111
+ plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
112
+
113
+ # Print time (inference + NMS)
114
+ print('%sDone. (%.3fs)' % (s, t2 - t1))
115
+
116
+ # Stream results
117
+ if view_img:
118
+ cv2.imshow(p, im0)
119
+ if cv2.waitKey(1) == ord('q'): # q to quit
120
+ raise StopIteration
121
+
122
+ # Save results (image with detections)
123
+ if save_img:
124
+ if dataset.mode == 'images':
125
+ cv2.imwrite(save_path, im0)
126
+ else:
127
+ if vid_path != save_path: # new video
128
+ vid_path = save_path
129
+ if isinstance(vid_writer, cv2.VideoWriter):
130
+ vid_writer.release() # release previous video writer
131
+
132
+ fourcc = 'mp4v' # output video codec
133
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
134
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
135
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
136
+ vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
137
+ vid_writer.write(im0)
138
+
139
+ if save_txt or save_img:
140
+ print('Results saved to %s' % Path(out))
141
+ if platform == 'darwin' and not opt.update: # MacOS
142
+ os.system('open ' + save_path)
143
+
144
+ print('Done. (%.3fs)' % (time.time() - t0))
145
+
146
+
147
+ if __name__ == '__main__':
148
+ parser = argparse.ArgumentParser()
149
+ parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
150
+ parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
151
+ parser.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder
152
+ parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
153
+ parser.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold')
154
+ parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
155
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
156
+ parser.add_argument('--view-img', action='store_true', help='display results')
157
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
158
+ parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
159
+ parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
160
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
161
+ parser.add_argument('--update', action='store_true', help='update all models')
162
+ opt = parser.parse_args()
163
+ print(opt)
164
+
165
+ with torch.no_grad():
166
+ if opt.update: # update all models (to fix SourceChangeWarning)
167
+ for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
168
+ detect()
169
+ strip_optimizer(opt.weights)
170
+ else:
171
+ detect()
yolov5_anime/hubconf.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """File for accessing YOLOv5 via PyTorch Hub https://pytorch.org/hub/
2
+
3
+ Usage:
4
+ import torch
5
+ model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True, channels=3, classes=80)
6
+ """
7
+
8
+ dependencies = ['torch', 'yaml']
9
+ import os
10
+
11
+ import torch
12
+
13
+ from models.yolo import Model
14
+ from utils.google_utils import attempt_download
15
+
16
+
17
+ def create(name, pretrained, channels, classes):
18
+ """Creates a specified YOLOv5 model
19
+
20
+ Arguments:
21
+ name (str): name of model, i.e. 'yolov5s'
22
+ pretrained (bool): load pretrained weights into the model
23
+ channels (int): number of input channels
24
+ classes (int): number of model classes
25
+
26
+ Returns:
27
+ pytorch model
28
+ """
29
+ config = os.path.join(os.path.dirname(__file__), 'models', '%s.yaml' % name) # model.yaml path
30
+ try:
31
+ model = Model(config, channels, classes)
32
+ if pretrained:
33
+ ckpt = '%s.pt' % name # checkpoint filename
34
+ attempt_download(ckpt) # download if not found locally
35
+ state_dict = torch.load(ckpt, map_location=torch.device('cpu'))['model'].float().state_dict() # to FP32
36
+ state_dict = {k: v for k, v in state_dict.items() if model.state_dict()[k].shape == v.shape} # filter
37
+ model.load_state_dict(state_dict, strict=False) # load
38
+ return model
39
+
40
+ except Exception as e:
41
+ help_url = 'https://github.com/ultralytics/yolov5/issues/36'
42
+ s = 'Cache maybe be out of date, deleting cache and retrying may solve this. See %s for help.' % help_url
43
+ raise Exception(s) from e
44
+
45
+
46
+ def yolov5s(pretrained=False, channels=3, classes=80):
47
+ """YOLOv5-small model from https://github.com/ultralytics/yolov5
48
+
49
+ Arguments:
50
+ pretrained (bool): load pretrained weights into the model, default=False
51
+ channels (int): number of input channels, default=3
52
+ classes (int): number of model classes, default=80
53
+
54
+ Returns:
55
+ pytorch model
56
+ """
57
+ return create('yolov5s', pretrained, channels, classes)
58
+
59
+
60
+ def yolov5m(pretrained=False, channels=3, classes=80):
61
+ """YOLOv5-medium model from https://github.com/ultralytics/yolov5
62
+
63
+ Arguments:
64
+ pretrained (bool): load pretrained weights into the model, default=False
65
+ channels (int): number of input channels, default=3
66
+ classes (int): number of model classes, default=80
67
+
68
+ Returns:
69
+ pytorch model
70
+ """
71
+ return create('yolov5m', pretrained, channels, classes)
72
+
73
+
74
+ def yolov5l(pretrained=False, channels=3, classes=80):
75
+ """YOLOv5-large model from https://github.com/ultralytics/yolov5
76
+
77
+ Arguments:
78
+ pretrained (bool): load pretrained weights into the model, default=False
79
+ channels (int): number of input channels, default=3
80
+ classes (int): number of model classes, default=80
81
+
82
+ Returns:
83
+ pytorch model
84
+ """
85
+ return create('yolov5l', pretrained, channels, classes)
86
+
87
+
88
+ def yolov5x(pretrained=False, channels=3, classes=80):
89
+ """YOLOv5-xlarge model from https://github.com/ultralytics/yolov5
90
+
91
+ Arguments:
92
+ pretrained (bool): load pretrained weights into the model, default=False
93
+ channels (int): number of input channels, default=3
94
+ classes (int): number of model classes, default=80
95
+
96
+ Returns:
97
+ pytorch model
98
+ """
99
+ return create('yolov5x', pretrained, channels, classes)
yolov5_anime/models/__init__.py ADDED
File without changes
yolov5_anime/models/common.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file contains modules common to various models
2
+ import math
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+
7
+
8
+ def autopad(k, p=None): # kernel, padding
9
+ # Pad to 'same'
10
+ if p is None:
11
+ p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
12
+ return p
13
+
14
+
15
+ def DWConv(c1, c2, k=1, s=1, act=True):
16
+ # Depthwise convolution
17
+ return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
18
+
19
+
20
+ class Conv(nn.Module):
21
+ # Standard convolution
22
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
23
+ super(Conv, self).__init__()
24
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
25
+ self.bn = nn.BatchNorm2d(c2)
26
+ self.act = nn.LeakyReLU(0.1, inplace=True) if act else nn.Identity()
27
+
28
+ def forward(self, x):
29
+ return self.act(self.bn(self.conv(x)))
30
+
31
+ def fuseforward(self, x):
32
+ return self.act(self.conv(x))
33
+
34
+
35
+ class Bottleneck(nn.Module):
36
+ # Standard bottleneck
37
+ def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
38
+ super(Bottleneck, self).__init__()
39
+ c_ = int(c2 * e) # hidden channels
40
+ self.cv1 = Conv(c1, c_, 1, 1)
41
+ self.cv2 = Conv(c_, c2, 3, 1, g=g)
42
+ self.add = shortcut and c1 == c2
43
+
44
+ def forward(self, x):
45
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
46
+
47
+
48
+ class BottleneckCSP(nn.Module):
49
+ # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
50
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
51
+ super(BottleneckCSP, self).__init__()
52
+ c_ = int(c2 * e) # hidden channels
53
+ self.cv1 = Conv(c1, c_, 1, 1)
54
+ self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
55
+ self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
56
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
57
+ self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
58
+ self.act = nn.LeakyReLU(0.1, inplace=True)
59
+ self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
60
+
61
+ def forward(self, x):
62
+ y1 = self.cv3(self.m(self.cv1(x)))
63
+ y2 = self.cv2(x)
64
+ return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
65
+
66
+
67
+ class SPP(nn.Module):
68
+ # Spatial pyramid pooling layer used in YOLOv3-SPP
69
+ def __init__(self, c1, c2, k=(5, 9, 13)):
70
+ super(SPP, self).__init__()
71
+ c_ = c1 // 2 # hidden channels
72
+ self.cv1 = Conv(c1, c_, 1, 1)
73
+ self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
74
+ self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
75
+
76
+ def forward(self, x):
77
+ x = self.cv1(x)
78
+ return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
79
+
80
+
81
+ class Focus(nn.Module):
82
+ # Focus wh information into c-space
83
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
84
+ super(Focus, self).__init__()
85
+ self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
86
+
87
+ def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
88
+ return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
89
+
90
+
91
+ class Concat(nn.Module):
92
+ # Concatenate a list of tensors along dimension
93
+ def __init__(self, dimension=1):
94
+ super(Concat, self).__init__()
95
+ self.d = dimension
96
+
97
+ def forward(self, x):
98
+ return torch.cat(x, self.d)
99
+
100
+
101
+ class Flatten(nn.Module):
102
+ # Use after nn.AdaptiveAvgPool2d(1) to remove last 2 dimensions
103
+ @staticmethod
104
+ def forward(x):
105
+ return x.view(x.size(0), -1)
106
+
107
+
108
+ class Classify(nn.Module):
109
+ # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
110
+ def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
111
+ super(Classify, self).__init__()
112
+ self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
113
+ self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) # to x(b,c2,1,1)
114
+ self.flat = Flatten()
115
+
116
+ def forward(self, x):
117
+ z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
118
+ return self.flat(self.conv(z)) # flatten to x(b,c2)
yolov5_anime/models/experimental.py ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file contains experimental modules
2
+
3
+ import numpy as np
4
+ import torch
5
+ import torch.nn as nn
6
+
7
+ from models.common import Conv, DWConv
8
+ from utils.google_utils import attempt_download
9
+
10
+
11
+ class CrossConv(nn.Module):
12
+ # Cross Convolution Downsample
13
+ def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
14
+ # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
15
+ super(CrossConv, self).__init__()
16
+ c_ = int(c2 * e) # hidden channels
17
+ self.cv1 = Conv(c1, c_, (1, k), (1, s))
18
+ self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
19
+ self.add = shortcut and c1 == c2
20
+
21
+ def forward(self, x):
22
+ return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
23
+
24
+
25
+ class C3(nn.Module):
26
+ # Cross Convolution CSP
27
+ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
28
+ super(C3, self).__init__()
29
+ c_ = int(c2 * e) # hidden channels
30
+ self.cv1 = Conv(c1, c_, 1, 1)
31
+ self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
32
+ self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
33
+ self.cv4 = Conv(2 * c_, c2, 1, 1)
34
+ self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
35
+ self.act = nn.LeakyReLU(0.1, inplace=True)
36
+ self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
37
+
38
+ def forward(self, x):
39
+ y1 = self.cv3(self.m(self.cv1(x)))
40
+ y2 = self.cv2(x)
41
+ return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
42
+
43
+
44
+ class Sum(nn.Module):
45
+ # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
46
+ def __init__(self, n, weight=False): # n: number of inputs
47
+ super(Sum, self).__init__()
48
+ self.weight = weight # apply weights boolean
49
+ self.iter = range(n - 1) # iter object
50
+ if weight:
51
+ self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
52
+
53
+ def forward(self, x):
54
+ y = x[0] # no weight
55
+ if self.weight:
56
+ w = torch.sigmoid(self.w) * 2
57
+ for i in self.iter:
58
+ y = y + x[i + 1] * w[i]
59
+ else:
60
+ for i in self.iter:
61
+ y = y + x[i + 1]
62
+ return y
63
+
64
+
65
+ class GhostConv(nn.Module):
66
+ # Ghost Convolution https://github.com/huawei-noah/ghostnet
67
+ def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
68
+ super(GhostConv, self).__init__()
69
+ c_ = c2 // 2 # hidden channels
70
+ self.cv1 = Conv(c1, c_, k, s, g, act)
71
+ self.cv2 = Conv(c_, c_, 5, 1, c_, act)
72
+
73
+ def forward(self, x):
74
+ y = self.cv1(x)
75
+ return torch.cat([y, self.cv2(y)], 1)
76
+
77
+
78
+ class GhostBottleneck(nn.Module):
79
+ # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
80
+ def __init__(self, c1, c2, k, s):
81
+ super(GhostBottleneck, self).__init__()
82
+ c_ = c2 // 2
83
+ self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw
84
+ DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
85
+ GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
86
+ self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
87
+ Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
88
+
89
+ def forward(self, x):
90
+ return self.conv(x) + self.shortcut(x)
91
+
92
+
93
+ class MixConv2d(nn.Module):
94
+ # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595
95
+ def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):
96
+ super(MixConv2d, self).__init__()
97
+ groups = len(k)
98
+ if equal_ch: # equal c_ per group
99
+ i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices
100
+ c_ = [(i == g).sum() for g in range(groups)] # intermediate channels
101
+ else: # equal weight.numel() per group
102
+ b = [c2] + [0] * groups
103
+ a = np.eye(groups + 1, groups, k=-1)
104
+ a -= np.roll(a, 1, axis=1)
105
+ a *= np.array(k) ** 2
106
+ a[0] = 1
107
+ c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
108
+
109
+ self.m = nn.ModuleList([nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)])
110
+ self.bn = nn.BatchNorm2d(c2)
111
+ self.act = nn.LeakyReLU(0.1, inplace=True)
112
+
113
+ def forward(self, x):
114
+ return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
115
+
116
+
117
+ class Ensemble(nn.ModuleList):
118
+ # Ensemble of models
119
+ def __init__(self):
120
+ super(Ensemble, self).__init__()
121
+
122
+ def forward(self, x, augment=False):
123
+ y = []
124
+ for module in self:
125
+ y.append(module(x, augment)[0])
126
+ # y = torch.stack(y).max(0)[0] # max ensemble
127
+ # y = torch.cat(y, 1) # nms ensemble
128
+ y = torch.stack(y).mean(0) # mean ensemble
129
+ return y, None # inference, train output
130
+
131
+
132
+ def attempt_load(weights, map_location=None):
133
+ # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
134
+ model = Ensemble()
135
+ for w in weights if isinstance(weights, list) else [weights]:
136
+ attempt_download(w)
137
+ model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval()) # load FP32 model
138
+
139
+ if len(model) == 1:
140
+ return model[-1] # return model
141
+ else:
142
+ print('Ensemble created with %s\n' % weights)
143
+ for k in ['names', 'stride']:
144
+ setattr(model, k, getattr(model[-1], k))
145
+ return model # return ensemble
yolov5_anime/models/export.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Exports a YOLOv5 *.pt model to ONNX and TorchScript formats
2
+
3
+ Usage:
4
+ $ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
5
+ """
6
+
7
+ import argparse
8
+
9
+ import torch
10
+
11
+ from utils.google_utils import attempt_download
12
+
13
+ if __name__ == '__main__':
14
+ parser = argparse.ArgumentParser()
15
+ parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
16
+ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')
17
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
18
+ opt = parser.parse_args()
19
+ opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
20
+ print(opt)
21
+
22
+ # Input
23
+ img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection
24
+
25
+ # Load PyTorch model
26
+ attempt_download(opt.weights)
27
+ model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float()
28
+ model.eval()
29
+ model.model[-1].export = True # set Detect() layer export=True
30
+ y = model(img) # dry run
31
+
32
+ # TorchScript export
33
+ try:
34
+ print('\nStarting TorchScript export with torch %s...' % torch.__version__)
35
+ f = opt.weights.replace('.pt', '.torchscript.pt') # filename
36
+ ts = torch.jit.trace(model, img)
37
+ ts.save(f)
38
+ print('TorchScript export success, saved as %s' % f)
39
+ except Exception as e:
40
+ print('TorchScript export failure: %s' % e)
41
+
42
+ # ONNX export
43
+ try:
44
+ import onnx
45
+
46
+ print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
47
+ f = opt.weights.replace('.pt', '.onnx') # filename
48
+ model.fuse() # only for ONNX
49
+ torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
50
+ output_names=['classes', 'boxes'] if y is None else ['output'])
51
+
52
+ # Checks
53
+ onnx_model = onnx.load(f) # load onnx model
54
+ onnx.checker.check_model(onnx_model) # check onnx model
55
+ print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
56
+ print('ONNX export success, saved as %s' % f)
57
+ except Exception as e:
58
+ print('ONNX export failure: %s' % e)
59
+
60
+ # CoreML export
61
+ try:
62
+ import coremltools as ct
63
+
64
+ print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
65
+ # convert model from torchscript and apply pixel scaling as per detect.py
66
+ model = ct.convert(ts, inputs=[ct.ImageType(name='images', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
67
+ f = opt.weights.replace('.pt', '.mlmodel') # filename
68
+ model.save(f)
69
+ print('CoreML export success, saved as %s' % f)
70
+ except Exception as e:
71
+ print('CoreML export failure: %s' % e)
72
+
73
+ # Finish
74
+ print('\nExport complete. Visualize with https://github.com/lutzroeder/netron.')
yolov5_anime/models/hub/yolov3-spp.yaml ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # darknet53 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Conv, [32, 3, 1]], # 0
16
+ [-1, 1, Conv, [64, 3, 2]], # 1-P1/2
17
+ [-1, 1, Bottleneck, [64]],
18
+ [-1, 1, Conv, [128, 3, 2]], # 3-P2/4
19
+ [-1, 2, Bottleneck, [128]],
20
+ [-1, 1, Conv, [256, 3, 2]], # 5-P3/8
21
+ [-1, 8, Bottleneck, [256]],
22
+ [-1, 1, Conv, [512, 3, 2]], # 7-P4/16
23
+ [-1, 8, Bottleneck, [512]],
24
+ [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32
25
+ [-1, 4, Bottleneck, [1024]], # 10
26
+ ]
27
+
28
+ # YOLOv3-SPP head
29
+ head:
30
+ [[-1, 1, Bottleneck, [1024, False]],
31
+ [-1, 1, SPP, [512, [5, 9, 13]]],
32
+ [-1, 1, Conv, [1024, 3, 1]],
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large)
35
+
36
+ [-2, 1, Conv, [256, 1, 1]],
37
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
38
+ [[-1, 8], 1, Concat, [1]], # cat backbone P4
39
+ [-1, 1, Bottleneck, [512, False]],
40
+ [-1, 1, Bottleneck, [512, False]],
41
+ [-1, 1, Conv, [256, 1, 1]],
42
+ [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium)
43
+
44
+ [-2, 1, Conv, [128, 1, 1]],
45
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
46
+ [[-1, 6], 1, Concat, [1]], # cat backbone P3
47
+ [-1, 1, Bottleneck, [256, False]],
48
+ [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small)
49
+
50
+ [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
51
+ ]
yolov5_anime/models/hub/yolov5-fpn.yaml ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, Bottleneck, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 9, BottleneckCSP, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, BottleneckCSP, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 1, SPP, [1024, [5, 9, 13]]],
24
+ [-1, 6, BottleneckCSP, [1024]], # 9
25
+ ]
26
+
27
+ # YOLOv5 FPN head
28
+ head:
29
+ [[-1, 3, BottleneckCSP, [1024, False]], # 10 (P5/32-large)
30
+
31
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
32
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
33
+ [-1, 1, Conv, [512, 1, 1]],
34
+ [-1, 3, BottleneckCSP, [512, False]], # 14 (P4/16-medium)
35
+
36
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
37
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
38
+ [-1, 1, Conv, [256, 1, 1]],
39
+ [-1, 3, BottleneckCSP, [256, False]], # 18 (P3/8-small)
40
+
41
+ [[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
42
+ ]
yolov5_anime/models/hub/yolov5-panet.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [116,90, 156,198, 373,326] # P5/32
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [10,13, 16,30, 33,23] # P3/8
11
+
12
+ # YOLOv5 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, BottleneckCSP, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 9, BottleneckCSP, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, BottleneckCSP, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 1, SPP, [1024, [5, 9, 13]]],
24
+ [-1, 3, BottleneckCSP, [1024, False]], # 9
25
+ ]
26
+
27
+ # YOLOv5 PANet head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, BottleneckCSP, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14], 1, Concat, [1]], # cat head P4
41
+ [-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P5, P4, P3)
48
+ ]
yolov5_anime/models/yolo.py ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import math
3
+ from copy import deepcopy
4
+ from pathlib import Path
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+
9
+ from models.common import Conv, Bottleneck, SPP, DWConv, Focus, BottleneckCSP, Concat
10
+ from models.experimental import MixConv2d, CrossConv, C3
11
+ from utils.general import check_anchor_order, make_divisible, check_file
12
+ from utils.torch_utils import (
13
+ time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, select_device)
14
+
15
+
16
+ class Detect(nn.Module):
17
+ def __init__(self, nc=80, anchors=(), ch=()): # detection layer
18
+ super(Detect, self).__init__()
19
+ self.stride = None # strides computed during build
20
+ self.nc = nc # number of classes
21
+ self.no = nc + 5 # number of outputs per anchor
22
+ self.nl = len(anchors) # number of detection layers
23
+ self.na = len(anchors[0]) // 2 # number of anchors
24
+ self.grid = [torch.zeros(1)] * self.nl # init grid
25
+ a = torch.tensor(anchors).float().view(self.nl, -1, 2)
26
+ self.register_buffer('anchors', a) # shape(nl,na,2)
27
+ self.register_buffer('anchor_grid', a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
28
+ self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
29
+ self.export = False # onnx export
30
+
31
+ def forward(self, x):
32
+ # x = x.copy() # for profiling
33
+ z = [] # inference output
34
+ self.training |= self.export
35
+ for i in range(self.nl):
36
+ x[i] = self.m[i](x[i]) # conv
37
+ bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
38
+ x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
39
+
40
+ if not self.training: # inference
41
+ if self.grid[i].shape[2:4] != x[i].shape[2:4]:
42
+ self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
43
+
44
+ y = x[i].sigmoid()
45
+ y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy
46
+ y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
47
+ z.append(y.view(bs, -1, self.no))
48
+
49
+ return x if self.training else (torch.cat(z, 1), x)
50
+
51
+ @staticmethod
52
+ def _make_grid(nx=20, ny=20):
53
+ yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
54
+ return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
55
+
56
+
57
+ class Model(nn.Module):
58
+ def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None): # model, input channels, number of classes
59
+ super(Model, self).__init__()
60
+ if isinstance(cfg, dict):
61
+ self.yaml = cfg # model dict
62
+ else: # is *.yaml
63
+ import yaml # for torch hub
64
+ self.yaml_file = Path(cfg).name
65
+ with open(cfg) as f:
66
+ self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
67
+
68
+ # Define model
69
+ if nc and nc != self.yaml['nc']:
70
+ print('Overriding %s nc=%g with nc=%g' % (cfg, self.yaml['nc'], nc))
71
+ self.yaml['nc'] = nc # override yaml value
72
+ self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist, ch_out
73
+ # print([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))])
74
+
75
+ # Build strides, anchors
76
+ m = self.model[-1] # Detect()
77
+ if isinstance(m, Detect):
78
+ s = 128 # 2x min stride
79
+ m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
80
+ m.anchors /= m.stride.view(-1, 1, 1)
81
+ check_anchor_order(m)
82
+ self.stride = m.stride
83
+ self._initialize_biases() # only run once
84
+ # print('Strides: %s' % m.stride.tolist())
85
+
86
+ # Init weights, biases
87
+ initialize_weights(self)
88
+ self.info()
89
+ print('')
90
+
91
+ def forward(self, x, augment=False, profile=False):
92
+ if augment:
93
+ img_size = x.shape[-2:] # height, width
94
+ s = [1, 0.83, 0.67] # scales
95
+ f = [None, 3, None] # flips (2-ud, 3-lr)
96
+ y = [] # outputs
97
+ for si, fi in zip(s, f):
98
+ xi = scale_img(x.flip(fi) if fi else x, si)
99
+ yi = self.forward_once(xi)[0] # forward
100
+ # cv2.imwrite('img%g.jpg' % s, 255 * xi[0].numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
101
+ yi[..., :4] /= si # de-scale
102
+ if fi == 2:
103
+ yi[..., 1] = img_size[0] - yi[..., 1] # de-flip ud
104
+ elif fi == 3:
105
+ yi[..., 0] = img_size[1] - yi[..., 0] # de-flip lr
106
+ y.append(yi)
107
+ return torch.cat(y, 1), None # augmented inference, train
108
+ else:
109
+ return self.forward_once(x, profile) # single-scale inference, train
110
+
111
+ def forward_once(self, x, profile=False):
112
+ y, dt = [], [] # outputs
113
+ for m in self.model:
114
+ if m.f != -1: # if not from previous layer
115
+ x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
116
+
117
+ if profile:
118
+ try:
119
+ import thop
120
+ o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # FLOPS
121
+ except:
122
+ o = 0
123
+ t = time_synchronized()
124
+ for _ in range(10):
125
+ _ = m(x)
126
+ dt.append((time_synchronized() - t) * 100)
127
+ print('%10.1f%10.0f%10.1fms %-40s' % (o, m.np, dt[-1], m.type))
128
+
129
+ x = m(x) # run
130
+ y.append(x if m.i in self.save else None) # save output
131
+
132
+ if profile:
133
+ print('%.1fms total' % sum(dt))
134
+ return x
135
+
136
+ def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency
137
+ # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
138
+ m = self.model[-1] # Detect() module
139
+ for mi, s in zip(m.m, m.stride): # from
140
+ b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85)
141
+ b[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image)
142
+ b[:, 5:] += math.log(0.6 / (m.nc - 0.99)) if cf is None else torch.log(cf / cf.sum()) # cls
143
+ mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
144
+
145
+ def _print_biases(self):
146
+ m = self.model[-1] # Detect() module
147
+ for mi in m.m: # from
148
+ b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85)
149
+ print(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
150
+
151
+ # def _print_weights(self):
152
+ # for m in self.model.modules():
153
+ # if type(m) is Bottleneck:
154
+ # print('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights
155
+
156
+ def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
157
+ print('Fusing layers... ', end='')
158
+ for m in self.model.modules():
159
+ if type(m) is Conv:
160
+ m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability
161
+ m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
162
+ m.bn = None # remove batchnorm
163
+ m.forward = m.fuseforward # update forward
164
+ self.info()
165
+ return self
166
+
167
+ def info(self): # print model information
168
+ model_info(self)
169
+
170
+
171
+ def parse_model(d, ch): # model_dict, input_channels(3)
172
+ print('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
173
+ anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
174
+ na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
175
+ no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
176
+
177
+ layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
178
+ for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
179
+ m = eval(m) if isinstance(m, str) else m # eval strings
180
+ for j, a in enumerate(args):
181
+ try:
182
+ args[j] = eval(a) if isinstance(a, str) else a # eval strings
183
+ except:
184
+ pass
185
+
186
+ n = max(round(n * gd), 1) if n > 1 else n # depth gain
187
+ if m in [nn.Conv2d, Conv, Bottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]:
188
+ c1, c2 = ch[f], args[0]
189
+
190
+ # Normal
191
+ # if i > 0 and args[0] != no: # channel expansion factor
192
+ # ex = 1.75 # exponential (default 2.0)
193
+ # e = math.log(c2 / ch[1]) / math.log(2)
194
+ # c2 = int(ch[1] * ex ** e)
195
+ # if m != Focus:
196
+
197
+ c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
198
+
199
+ # Experimental
200
+ # if i > 0 and args[0] != no: # channel expansion factor
201
+ # ex = 1 + gw # exponential (default 2.0)
202
+ # ch1 = 32 # ch[1]
203
+ # e = math.log(c2 / ch1) / math.log(2) # level 1-n
204
+ # c2 = int(ch1 * ex ** e)
205
+ # if m != Focus:
206
+ # c2 = make_divisible(c2, 8) if c2 != no else c2
207
+
208
+ args = [c1, c2, *args[1:]]
209
+ if m in [BottleneckCSP, C3]:
210
+ args.insert(2, n)
211
+ n = 1
212
+ elif m is nn.BatchNorm2d:
213
+ args = [ch[f]]
214
+ elif m is Concat:
215
+ c2 = sum([ch[-1 if x == -1 else x + 1] for x in f])
216
+ elif m is Detect:
217
+ args.append([ch[x + 1] for x in f])
218
+ if isinstance(args[1], int): # number of anchors
219
+ args[1] = [list(range(args[1] * 2))] * len(f)
220
+ else:
221
+ c2 = ch[f]
222
+
223
+ m_ = nn.Sequential(*[m(*args) for _ in range(n)]) if n > 1 else m(*args) # module
224
+ t = str(m)[8:-2].replace('__main__.', '') # module type
225
+ np = sum([x.numel() for x in m_.parameters()]) # number params
226
+ m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
227
+ print('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print
228
+ save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
229
+ layers.append(m_)
230
+ ch.append(c2)
231
+ return nn.Sequential(*layers), sorted(save)
232
+
233
+
234
+ if __name__ == '__main__':
235
+ parser = argparse.ArgumentParser()
236
+ parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
237
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
238
+ opt = parser.parse_args()
239
+ opt.cfg = check_file(opt.cfg) # check file
240
+ device = select_device(opt.device)
241
+
242
+ # Create model
243
+ model = Model(opt.cfg).to(device)
244
+ model.train()
245
+
246
+ # Profile
247
+ # img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
248
+ # y = model(img, profile=True)
249
+
250
+ # ONNX export
251
+ # model.model[-1].export = True
252
+ # torch.onnx.export(model, img, opt.cfg.replace('.yaml', '.onnx'), verbose=True, opset_version=11)
253
+
254
+ # Tensorboard
255
+ # from torch.utils.tensorboard import SummaryWriter
256
+ # tb_writer = SummaryWriter()
257
+ # print("Run 'tensorboard --logdir=models/runs' to view tensorboard at http://localhost:6006/")
258
+ # tb_writer.add_graph(model.model, img) # add model to tensorboard
259
+ # tb_writer.add_image('test', img[0], dataformats='CWH') # add model to tensorboard
yolov5_anime/models/yolov5l.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 1.0 # model depth multiple
4
+ width_multiple: 1.0 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, BottleneckCSP, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 9, BottleneckCSP, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, BottleneckCSP, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 1, SPP, [1024, [5, 9, 13]]],
24
+ [-1, 3, BottleneckCSP, [1024, False]], # 9
25
+ ]
26
+
27
+ # YOLOv5 head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, BottleneckCSP, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14], 1, Concat, [1]], # cat head P4
41
+ [-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]
yolov5_anime/models/yolov5m.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 0.67 # model depth multiple
4
+ width_multiple: 0.75 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, BottleneckCSP, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 9, BottleneckCSP, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, BottleneckCSP, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 1, SPP, [1024, [5, 9, 13]]],
24
+ [-1, 3, BottleneckCSP, [1024, False]], # 9
25
+ ]
26
+
27
+ # YOLOv5 head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, BottleneckCSP, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14], 1, Concat, [1]], # cat head P4
41
+ [-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]
yolov5_anime/models/yolov5s.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 80 # number of classes
3
+ depth_multiple: 0.33 # model depth multiple
4
+ width_multiple: 0.50 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, BottleneckCSP, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 9, BottleneckCSP, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, BottleneckCSP, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 1, SPP, [1024, [5, 9, 13]]],
24
+ [-1, 3, BottleneckCSP, [1024, False]], # 9
25
+ ]
26
+
27
+ # YOLOv5 head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, BottleneckCSP, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14], 1, Concat, [1]], # cat head P4
41
+ [-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]
yolov5_anime/models/yolov5x.yaml ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # parameters
2
+ nc: 1 # number of classes
3
+ depth_multiple: 1.33 # model depth multiple
4
+ width_multiple: 1.25 # layer channel multiple
5
+
6
+ # anchors
7
+ anchors:
8
+ - [10,13, 16,30, 33,23] # P3/8
9
+ - [30,61, 62,45, 59,119] # P4/16
10
+ - [116,90, 156,198, 373,326] # P5/32
11
+
12
+ # YOLOv5 backbone
13
+ backbone:
14
+ # [from, number, module, args]
15
+ [[-1, 1, Focus, [64, 3]], # 0-P1/2
16
+ [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
17
+ [-1, 3, BottleneckCSP, [128]],
18
+ [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
19
+ [-1, 9, BottleneckCSP, [256]],
20
+ [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
21
+ [-1, 9, BottleneckCSP, [512]],
22
+ [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
23
+ [-1, 1, SPP, [1024, [5, 9, 13]]],
24
+ [-1, 3, BottleneckCSP, [1024, False]], # 9
25
+ ]
26
+
27
+ # YOLOv5 head
28
+ head:
29
+ [[-1, 1, Conv, [512, 1, 1]],
30
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
31
+ [[-1, 6], 1, Concat, [1]], # cat backbone P4
32
+ [-1, 3, BottleneckCSP, [512, False]], # 13
33
+
34
+ [-1, 1, Conv, [256, 1, 1]],
35
+ [-1, 1, nn.Upsample, [None, 2, 'nearest']],
36
+ [[-1, 4], 1, Concat, [1]], # cat backbone P3
37
+ [-1, 3, BottleneckCSP, [256, False]], # 17 (P3/8-small)
38
+
39
+ [-1, 1, Conv, [256, 3, 2]],
40
+ [[-1, 14], 1, Concat, [1]], # cat head P4
41
+ [-1, 3, BottleneckCSP, [512, False]], # 20 (P4/16-medium)
42
+
43
+ [-1, 1, Conv, [512, 3, 2]],
44
+ [[-1, 10], 1, Concat, [1]], # cat head P5
45
+ [-1, 3, BottleneckCSP, [1024, False]], # 23 (P5/32-large)
46
+
47
+ [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
48
+ ]
yolov5_anime/requirements.txt ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pip install -r requirements.txt
2
+ Cython
3
+ matplotlib>=3.2.2
4
+ numpy>=1.18.5
5
+ opencv-python>=4.1.2
6
+ pillow
7
+ # pycocotools>=2.0
8
+ PyYAML>=5.3
9
+ scipy>=1.4.1
10
+ tensorboard>=2.2
11
+ torch>=1.6.0
12
+ torchvision>=0.7.0
13
+ tqdm>=4.41.0
14
+
15
+ # Conda commands (in place of pip) ---------------------------------------------
16
+ # conda update -yn base -c defaults conda
17
+ # conda install -yc anaconda numpy opencv matplotlib tqdm pillow ipython
18
+ # conda install -yc conda-forge scikit-image pycocotools tensorboard
19
+ # conda install -yc spyder-ide spyder-line-profiler
20
+ # conda install -yc pytorch pytorch torchvision
21
+ # conda install -yc conda-forge protobuf numpy && pip install onnx==1.6.0 # https://github.com/onnx/onnx#linux-and-macos
yolov5_anime/test.py ADDED
@@ -0,0 +1,292 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import glob
3
+ import json
4
+ import os
5
+ import shutil
6
+ from pathlib import Path
7
+
8
+ import numpy as np
9
+ import torch
10
+ import yaml
11
+ from tqdm import tqdm
12
+
13
+ from models.experimental import attempt_load
14
+ from utils.datasets import create_dataloader
15
+ from utils.general import (
16
+ coco80_to_coco91_class, check_dataset, check_file, check_img_size, compute_loss, non_max_suppression,
17
+ scale_coords, xyxy2xywh, clip_coords, plot_images, xywh2xyxy, box_iou, output_to_target, ap_per_class)
18
+ from utils.torch_utils import select_device, time_synchronized
19
+
20
+
21
+ def test(data,
22
+ weights=None,
23
+ batch_size=16,
24
+ imgsz=640,
25
+ conf_thres=0.001,
26
+ iou_thres=0.6, # for NMS
27
+ save_json=False,
28
+ single_cls=False,
29
+ augment=False,
30
+ verbose=False,
31
+ model=None,
32
+ dataloader=None,
33
+ save_dir='',
34
+ merge=False,
35
+ save_txt=False):
36
+ # Initialize/load model and set device
37
+ training = model is not None
38
+ if training: # called by train.py
39
+ device = next(model.parameters()).device # get model device
40
+
41
+ else: # called directly
42
+ device = select_device(opt.device, batch_size=batch_size)
43
+ merge, save_txt = opt.merge, opt.save_txt # use Merge NMS, save *.txt labels
44
+ if save_txt:
45
+ out = Path('inference/output')
46
+ if os.path.exists(out):
47
+ shutil.rmtree(out) # delete output folder
48
+ os.makedirs(out) # make new output folder
49
+
50
+ # Remove previous
51
+ for f in glob.glob(str(Path(save_dir) / 'test_batch*.jpg')):
52
+ os.remove(f)
53
+
54
+ # Load model
55
+ model = attempt_load(weights, map_location=device) # load FP32 model
56
+ imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size
57
+
58
+ # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
59
+ # if device.type != 'cpu' and torch.cuda.device_count() > 1:
60
+ # model = nn.DataParallel(model)
61
+
62
+ # Half
63
+ half = device.type != 'cpu' # half precision only supported on CUDA
64
+ if half:
65
+ model.half()
66
+
67
+ # Configure
68
+ model.eval()
69
+ with open(data) as f:
70
+ data = yaml.load(f, Loader=yaml.FullLoader) # model dict
71
+ check_dataset(data) # check
72
+ nc = 1 if single_cls else int(data['nc']) # number of classes
73
+ iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for [email protected]:0.95
74
+ niou = iouv.numel()
75
+
76
+ # Dataloader
77
+ if not training:
78
+ img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
79
+ _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
80
+ path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images
81
+ dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt,
82
+ hyp=None, augment=False, cache=False, pad=0.5, rect=True)[0]
83
+
84
+ seen = 0
85
+ names = model.names if hasattr(model, 'names') else model.module.names
86
+ coco91class = coco80_to_coco91_class()
87
+ s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', '[email protected]', '[email protected]:.95')
88
+ p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
89
+ loss = torch.zeros(3, device=device)
90
+ jdict, stats, ap, ap_class = [], [], [], []
91
+ for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
92
+ img = img.to(device, non_blocking=True)
93
+ img = img.half() if half else img.float() # uint8 to fp16/32
94
+ img /= 255.0 # 0 - 255 to 0.0 - 1.0
95
+ targets = targets.to(device)
96
+ nb, _, height, width = img.shape # batch size, channels, height, width
97
+ whwh = torch.Tensor([width, height, width, height]).to(device)
98
+
99
+ # Disable gradients
100
+ with torch.no_grad():
101
+ # Run model
102
+ t = time_synchronized()
103
+ inf_out, train_out = model(img, augment=augment) # inference and training outputs
104
+ t0 += time_synchronized() - t
105
+
106
+ # Compute loss
107
+ if training: # if model has loss hyperparameters
108
+ loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # GIoU, obj, cls
109
+
110
+ # Run NMS
111
+ t = time_synchronized()
112
+ output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, merge=merge)
113
+ t1 += time_synchronized() - t
114
+
115
+ # Statistics per image
116
+ for si, pred in enumerate(output):
117
+ labels = targets[targets[:, 0] == si, 1:]
118
+ nl = len(labels)
119
+ tcls = labels[:, 0].tolist() if nl else [] # target class
120
+ seen += 1
121
+
122
+ if pred is None:
123
+ if nl:
124
+ stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
125
+ continue
126
+
127
+ # Append to text file
128
+ if save_txt:
129
+ gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
130
+ txt_path = str(out / Path(paths[si]).stem)
131
+ pred[:, :4] = scale_coords(img[si].shape[1:], pred[:, :4], shapes[si][0], shapes[si][1]) # to original
132
+ for *xyxy, conf, cls in pred:
133
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
134
+ with open(txt_path + '.txt', 'a') as f:
135
+ f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format
136
+
137
+ # Clip boxes to image bounds
138
+ clip_coords(pred, (height, width))
139
+
140
+ # Append to pycocotools JSON dictionary
141
+ if save_json:
142
+ # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
143
+ image_id = Path(paths[si]).stem
144
+ box = pred[:, :4].clone() # xyxy
145
+ scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape
146
+ box = xyxy2xywh(box) # xywh
147
+ box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
148
+ for p, b in zip(pred.tolist(), box.tolist()):
149
+ jdict.append({'image_id': int(image_id) if image_id.isnumeric() else image_id,
150
+ 'category_id': coco91class[int(p[5])],
151
+ 'bbox': [round(x, 3) for x in b],
152
+ 'score': round(p[4], 5)})
153
+
154
+ # Assign all predictions as incorrect
155
+ correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
156
+ if nl:
157
+ detected = [] # target indices
158
+ tcls_tensor = labels[:, 0]
159
+
160
+ # target boxes
161
+ tbox = xywh2xyxy(labels[:, 1:5]) * whwh
162
+
163
+ # Per target class
164
+ for cls in torch.unique(tcls_tensor):
165
+ ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
166
+ pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
167
+
168
+ # Search for detections
169
+ if pi.shape[0]:
170
+ # Prediction to target ious
171
+ ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices
172
+
173
+ # Append detections
174
+ for j in (ious > iouv[0]).nonzero(as_tuple=False):
175
+ d = ti[i[j]] # detected target
176
+ if d not in detected:
177
+ detected.append(d)
178
+ correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
179
+ if len(detected) == nl: # all targets already located in image
180
+ break
181
+
182
+ # Append statistics (correct, conf, pcls, tcls)
183
+ stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
184
+
185
+ # Plot images
186
+ if batch_i < 1:
187
+ f = Path(save_dir) / ('test_batch%g_gt.jpg' % batch_i) # filename
188
+ plot_images(img, targets, paths, str(f), names) # ground truth
189
+ f = Path(save_dir) / ('test_batch%g_pred.jpg' % batch_i)
190
+ plot_images(img, output_to_target(output, width, height), paths, str(f), names) # predictions
191
+
192
+ # Compute statistics
193
+ stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
194
+ if len(stats) and stats[0].any():
195
+ p, r, ap, f1, ap_class = ap_per_class(*stats)
196
+ p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, [email protected], [email protected]:0.95]
197
+ mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
198
+ nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
199
+ else:
200
+ nt = torch.zeros(1)
201
+
202
+ # Print results
203
+ pf = '%20s' + '%12.3g' * 6 # print format
204
+ print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
205
+
206
+ # Print results per class
207
+ if verbose and nc > 1 and len(stats):
208
+ for i, c in enumerate(ap_class):
209
+ print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
210
+
211
+ # Print speeds
212
+ t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
213
+ if not training:
214
+ print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
215
+
216
+ # Save JSON
217
+ if save_json and len(jdict):
218
+ f = 'detections_val2017_%s_results.json' % \
219
+ (weights.split(os.sep)[-1].replace('.pt', '') if isinstance(weights, str) else '') # filename
220
+ print('\nCOCO mAP with pycocotools... saving %s...' % f)
221
+ with open(f, 'w') as file:
222
+ json.dump(jdict, file)
223
+
224
+ try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
225
+ from pycocotools.coco import COCO
226
+ from pycocotools.cocoeval import COCOeval
227
+
228
+ imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files]
229
+ cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0]) # initialize COCO ground truth api
230
+ cocoDt = cocoGt.loadRes(f) # initialize COCO pred api
231
+ cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')
232
+ cocoEval.params.imgIds = imgIds # image IDs to evaluate
233
+ cocoEval.evaluate()
234
+ cocoEval.accumulate()
235
+ cocoEval.summarize()
236
+ map, map50 = cocoEval.stats[:2] # update results ([email protected]:0.95, [email protected])
237
+ except Exception as e:
238
+ print('ERROR: pycocotools unable to run: %s' % e)
239
+
240
+ # Return results
241
+ model.float() # for training
242
+ maps = np.zeros(nc) + map
243
+ for i, c in enumerate(ap_class):
244
+ maps[c] = ap[i]
245
+ return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
246
+
247
+
248
+ if __name__ == '__main__':
249
+ parser = argparse.ArgumentParser(prog='test.py')
250
+ parser.add_argument('--weights', nargs='+', type=str, default='yolov5s.pt', help='model.pt path(s)')
251
+ parser.add_argument('--data', type=str, default='data/coco128.yaml', help='*.data path')
252
+ parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
253
+ parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
254
+ parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
255
+ parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
256
+ parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
257
+ parser.add_argument('--task', default='val', help="'val', 'test', 'study'")
258
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
259
+ parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
260
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
261
+ parser.add_argument('--merge', action='store_true', help='use Merge NMS')
262
+ parser.add_argument('--verbose', action='store_true', help='report mAP by class')
263
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
264
+ opt = parser.parse_args()
265
+ opt.save_json |= opt.data.endswith('coco.yaml')
266
+ opt.data = check_file(opt.data) # check file
267
+ print(opt)
268
+
269
+ if opt.task in ['val', 'test']: # run normally
270
+ test(opt.data,
271
+ opt.weights,
272
+ opt.batch_size,
273
+ opt.img_size,
274
+ opt.conf_thres,
275
+ opt.iou_thres,
276
+ opt.save_json,
277
+ opt.single_cls,
278
+ opt.augment,
279
+ opt.verbose)
280
+
281
+ elif opt.task == 'study': # run over a range of settings and save/plot
282
+ for weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']:
283
+ f = 'study_%s_%s.txt' % (Path(opt.data).stem, Path(weights).stem) # filename to save to
284
+ x = list(range(352, 832, 64)) # x axis
285
+ y = [] # y axis
286
+ for i in x: # img-size
287
+ print('\nRunning %s point %s...' % (f, i))
288
+ r, _, t = test(opt.data, weights, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json)
289
+ y.append(r + t) # results and times
290
+ np.savetxt(f, y, fmt='%10.4g') # save
291
+ os.system('zip -r study.zip study_*.txt')
292
+ # plot_study_txt(f, x) # plot
yolov5_anime/train.py ADDED
@@ -0,0 +1,516 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import math
3
+ import os
4
+ import random
5
+ import time
6
+ from pathlib import Path
7
+
8
+ import numpy as np
9
+ import torch.distributed as dist
10
+ import torch.nn.functional as F
11
+ import torch.optim as optim
12
+ import torch.optim.lr_scheduler as lr_scheduler
13
+ import torch.utils.data
14
+ import yaml
15
+ from torch.cuda import amp
16
+ from torch.nn.parallel import DistributedDataParallel as DDP
17
+ from torch.utils.tensorboard import SummaryWriter
18
+ from tqdm import tqdm
19
+
20
+ import test # import test.py to get mAP after each epoch
21
+ from models.yolo import Model
22
+ from utils.datasets import create_dataloader
23
+ from utils.general import (
24
+ torch_distributed_zero_first, labels_to_class_weights, plot_labels, check_anchors, labels_to_image_weights,
25
+ compute_loss, plot_images, fitness, strip_optimizer, plot_results, get_latest_run, check_dataset, check_file,
26
+ check_git_status, check_img_size, increment_dir, print_mutation, plot_evolution)
27
+ from utils.google_utils import attempt_download
28
+ from utils.torch_utils import init_seeds, ModelEMA, select_device, intersect_dicts
29
+
30
+
31
+ def train(hyp, opt, device, tb_writer=None):
32
+ print(f'Hyperparameters {hyp}')
33
+ log_dir = Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / 'evolve' # logging directory
34
+ wdir = str(log_dir / 'weights') + os.sep # weights directory
35
+ os.makedirs(wdir, exist_ok=True)
36
+ last = wdir + 'last.pt'
37
+ best = wdir + 'best.pt'
38
+ results_file = str(log_dir / 'results.txt')
39
+ epochs, batch_size, total_batch_size, weights, rank = \
40
+ opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
41
+
42
+ # TODO: Use DDP logging. Only the first process is allowed to log.
43
+ # Save run settings
44
+ with open(log_dir / 'hyp.yaml', 'w') as f:
45
+ yaml.dump(hyp, f, sort_keys=False)
46
+ with open(log_dir / 'opt.yaml', 'w') as f:
47
+ yaml.dump(vars(opt), f, sort_keys=False)
48
+
49
+ # Configure
50
+ cuda = device.type != 'cpu'
51
+ init_seeds(2 + rank)
52
+ with open(opt.data) as f:
53
+ data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict
54
+ with torch_distributed_zero_first(rank):
55
+ check_dataset(data_dict) # check
56
+ train_path = data_dict['train']
57
+ test_path = data_dict['val']
58
+ nc, names = (1, ['item']) if opt.single_cls else (int(data_dict['nc']), data_dict['names']) # number classes, names
59
+ assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
60
+
61
+ # Model
62
+ pretrained = weights.endswith('.pt')
63
+ if pretrained:
64
+ with torch_distributed_zero_first(rank):
65
+ attempt_download(weights) # download if not found locally
66
+ ckpt = torch.load(weights, map_location=device) # load checkpoint
67
+ model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc).to(device) # create
68
+ exclude = ['anchor'] if opt.cfg else [] # exclude keys
69
+ state_dict = ckpt['model'].float().state_dict() # to FP32
70
+ state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
71
+ model.load_state_dict(state_dict, strict=False) # load
72
+ print('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
73
+ else:
74
+ model = Model(opt.cfg, ch=3, nc=nc).to(device) # create
75
+
76
+ # Optimizer
77
+ nbs = 64 # nominal batch size
78
+ accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
79
+ hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
80
+
81
+ pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
82
+ for k, v in model.named_parameters():
83
+ v.requires_grad = True
84
+ if '.bias' in k:
85
+ pg2.append(v) # biases
86
+ elif '.weight' in k and '.bn' not in k:
87
+ pg1.append(v) # apply weight decay
88
+ else:
89
+ pg0.append(v) # all else
90
+
91
+ if opt.adam:
92
+ optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
93
+ else:
94
+ optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
95
+
96
+ optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
97
+ optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
98
+ print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
99
+ del pg0, pg1, pg2
100
+
101
+ # Scheduler https://arxiv.org/pdf/1812.01187.pdf
102
+ # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
103
+ lf = lambda x: (((1 + math.cos(x * math.pi / epochs)) / 2) ** 1.0) * 0.8 + 0.2 # cosine
104
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
105
+ # plot_lr_scheduler(optimizer, scheduler, epochs)
106
+
107
+ # Resume
108
+ start_epoch, best_fitness = 0, 0.0
109
+ if pretrained:
110
+ # Optimizer
111
+ if ckpt['optimizer'] is not None:
112
+ optimizer.load_state_dict(ckpt['optimizer'])
113
+ best_fitness = ckpt['best_fitness']
114
+
115
+ # Results
116
+ if ckpt.get('training_results') is not None:
117
+ with open(results_file, 'w') as file:
118
+ file.write(ckpt['training_results']) # write results.txt
119
+
120
+ # Epochs
121
+ start_epoch = ckpt['epoch'] + 1
122
+ if epochs < start_epoch:
123
+ print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
124
+ (weights, ckpt['epoch'], epochs))
125
+ epochs += ckpt['epoch'] # finetune additional epochs
126
+
127
+ del ckpt, state_dict
128
+
129
+ # Image sizes
130
+ gs = int(max(model.stride)) # grid size (max stride)
131
+ imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
132
+
133
+ # DP mode
134
+ if cuda and rank == -1 and torch.cuda.device_count() > 1:
135
+ model = torch.nn.DataParallel(model)
136
+
137
+ # SyncBatchNorm
138
+ if opt.sync_bn and cuda and rank != -1:
139
+ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
140
+ print('Using SyncBatchNorm()')
141
+
142
+ # Exponential moving average
143
+ ema = ModelEMA(model) if rank in [-1, 0] else None
144
+
145
+ # DDP mode
146
+ if cuda and rank != -1:
147
+ model = DDP(model, device_ids=[opt.local_rank], output_device=(opt.local_rank))
148
+
149
+ # Trainloader
150
+ dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt, hyp=hyp, augment=True,
151
+ cache=opt.cache_images, rect=opt.rect, local_rank=rank,
152
+ world_size=opt.world_size)
153
+ mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
154
+ nb = len(dataloader) # number of batches
155
+ assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
156
+
157
+ # Testloader
158
+ if rank in [-1, 0]:
159
+ # local_rank is set to -1. Because only the first process is expected to do evaluation.
160
+ testloader = create_dataloader(test_path, imgsz_test, total_batch_size, gs, opt, hyp=hyp, augment=False,
161
+ cache=opt.cache_images, rect=True, local_rank=-1, world_size=opt.world_size)[0]
162
+
163
+ # Model parameters
164
+ hyp['cls'] *= nc / 80. # scale coco-tuned hyp['cls'] to current dataset
165
+ model.nc = nc # attach number of classes to model
166
+ model.hyp = hyp # attach hyperparameters to model
167
+ model.gr = 1.0 # giou loss ratio (obj_loss = 1.0 or giou)
168
+ model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) # attach class weights
169
+ model.names = names
170
+
171
+ # Class frequency
172
+ if rank in [-1, 0]:
173
+ labels = np.concatenate(dataset.labels, 0)
174
+ c = torch.tensor(labels[:, 0]) # classes
175
+ # cf = torch.bincount(c.long(), minlength=nc) + 1.
176
+ # model._initialize_biases(cf.to(device))
177
+ plot_labels(labels, save_dir=log_dir)
178
+ if tb_writer:
179
+ # tb_writer.add_hparams(hyp, {}) # causes duplicate https://github.com/ultralytics/yolov5/pull/384
180
+ tb_writer.add_histogram('classes', c, 0)
181
+
182
+ # Check anchors
183
+ if not opt.noautoanchor:
184
+ check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
185
+
186
+ # Start training
187
+ t0 = time.time()
188
+ nw = max(3 * nb, 1e3) # number of warmup iterations, max(3 epochs, 1k iterations)
189
+ # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
190
+ maps = np.zeros(nc) # mAP per class
191
+ results = (0, 0, 0, 0, 0, 0, 0) # 'P', 'R', 'mAP', 'F1', 'val GIoU', 'val Objectness', 'val Classification'
192
+ scheduler.last_epoch = start_epoch - 1 # do not move
193
+ scaler = amp.GradScaler(enabled=cuda)
194
+ if rank in [0, -1]:
195
+ print('Image sizes %g train, %g test' % (imgsz, imgsz_test))
196
+ print('Using %g dataloader workers' % dataloader.num_workers)
197
+ print('Starting training for %g epochs...' % epochs)
198
+ # torch.autograd.set_detect_anomaly(True)
199
+ for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
200
+ model.train()
201
+
202
+ # Update image weights (optional)
203
+ if dataset.image_weights:
204
+ # Generate indices
205
+ if rank in [-1, 0]:
206
+ w = model.class_weights.cpu().numpy() * (1 - maps) ** 2 # class weights
207
+ image_weights = labels_to_image_weights(dataset.labels, nc=nc, class_weights=w)
208
+ dataset.indices = random.choices(range(dataset.n), weights=image_weights,
209
+ k=dataset.n) # rand weighted idx
210
+ # Broadcast if DDP
211
+ if rank != -1:
212
+ indices = torch.zeros([dataset.n], dtype=torch.int)
213
+ if rank == 0:
214
+ indices[:] = torch.from_tensor(dataset.indices, dtype=torch.int)
215
+ dist.broadcast(indices, 0)
216
+ if rank != 0:
217
+ dataset.indices = indices.cpu().numpy()
218
+
219
+ # Update mosaic border
220
+ # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
221
+ # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
222
+
223
+ mloss = torch.zeros(4, device=device) # mean losses
224
+ if rank != -1:
225
+ dataloader.sampler.set_epoch(epoch)
226
+ pbar = enumerate(dataloader)
227
+ if rank in [-1, 0]:
228
+ print(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'GIoU', 'obj', 'cls', 'total', 'targets', 'img_size'))
229
+ pbar = tqdm(pbar, total=nb) # progress bar
230
+ optimizer.zero_grad()
231
+ for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
232
+ ni = i + nb * epoch # number integrated batches (since train start)
233
+ imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
234
+
235
+ # Warmup
236
+ if ni <= nw:
237
+ xi = [0, nw] # x interp
238
+ # model.gr = np.interp(ni, xi, [0.0, 1.0]) # giou loss ratio (obj_loss = 1.0 or giou)
239
+ accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
240
+ for j, x in enumerate(optimizer.param_groups):
241
+ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
242
+ x['lr'] = np.interp(ni, xi, [0.1 if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
243
+ if 'momentum' in x:
244
+ x['momentum'] = np.interp(ni, xi, [0.9, hyp['momentum']])
245
+
246
+ # Multi-scale
247
+ if opt.multi_scale:
248
+ sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
249
+ sf = sz / max(imgs.shape[2:]) # scale factor
250
+ if sf != 1:
251
+ ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
252
+ imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
253
+
254
+ # Autocast
255
+ with amp.autocast(enabled=cuda):
256
+ # Forward
257
+ pred = model(imgs)
258
+
259
+ # Loss
260
+ loss, loss_items = compute_loss(pred, targets.to(device), model) # scaled by batch_size
261
+ if rank != -1:
262
+ loss *= opt.world_size # gradient averaged between devices in DDP mode
263
+ # if not torch.isfinite(loss):
264
+ # print('WARNING: non-finite loss, ending training ', loss_items)
265
+ # return results
266
+
267
+ # Backward
268
+ scaler.scale(loss).backward()
269
+
270
+ # Optimize
271
+ if ni % accumulate == 0:
272
+ scaler.step(optimizer) # optimizer.step
273
+ scaler.update()
274
+ optimizer.zero_grad()
275
+ if ema is not None:
276
+ ema.update(model)
277
+
278
+ # Print
279
+ if rank in [-1, 0]:
280
+ mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
281
+ mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
282
+ s = ('%10s' * 2 + '%10.4g' * 6) % (
283
+ '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
284
+ pbar.set_description(s)
285
+
286
+ # Plot
287
+ if ni < 3:
288
+ f = str(log_dir / ('train_batch%g.jpg' % ni)) # filename
289
+ result = plot_images(images=imgs, targets=targets, paths=paths, fname=f)
290
+ if tb_writer and result is not None:
291
+ tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
292
+ # tb_writer.add_graph(model, imgs) # add model to tensorboard
293
+
294
+ # end batch ------------------------------------------------------------------------------------------------
295
+
296
+ # Scheduler
297
+ scheduler.step()
298
+
299
+ # DDP process 0 or single-GPU
300
+ if rank in [-1, 0]:
301
+ # mAP
302
+ if ema is not None:
303
+ ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
304
+ final_epoch = epoch + 1 == epochs
305
+ if not opt.notest or final_epoch: # Calculate mAP
306
+ results, maps, times = test.test(opt.data,
307
+ batch_size=total_batch_size,
308
+ imgsz=imgsz_test,
309
+ model=ema.ema.module if hasattr(ema.ema, 'module') else ema.ema,
310
+ single_cls=opt.single_cls,
311
+ dataloader=testloader,
312
+ save_dir=log_dir)
313
+
314
+ # Write
315
+ with open(results_file, 'a') as f:
316
+ f.write(s + '%10.4g' * 7 % results + '\n') # P, R, mAP, F1, test_losses=(GIoU, obj, cls)
317
+ if len(opt.name) and opt.bucket:
318
+ os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
319
+
320
+ # Tensorboard
321
+ if tb_writer:
322
+ tags = ['train/giou_loss', 'train/obj_loss', 'train/cls_loss',
323
+ 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
324
+ 'val/giou_loss', 'val/obj_loss', 'val/cls_loss']
325
+ for x, tag in zip(list(mloss[:-1]) + list(results), tags):
326
+ tb_writer.add_scalar(tag, x, epoch)
327
+
328
+ # Update best mAP
329
+ fi = fitness(np.array(results).reshape(1, -1)) # fitness_i = weighted combination of [P, R, mAP, F1]
330
+ if fi > best_fitness:
331
+ best_fitness = fi
332
+
333
+ # Save model
334
+ save = (not opt.nosave) or (final_epoch and not opt.evolve)
335
+ if save:
336
+ with open(results_file, 'r') as f: # create checkpoint
337
+ ckpt = {'epoch': epoch,
338
+ 'best_fitness': best_fitness,
339
+ 'training_results': f.read(),
340
+ 'model': ema.ema.module if hasattr(ema, 'module') else ema.ema,
341
+ 'optimizer': None if final_epoch else optimizer.state_dict()}
342
+
343
+ # Save last, best and delete
344
+ torch.save(ckpt, last)
345
+ if best_fitness == fi:
346
+ torch.save(ckpt, best)
347
+ del ckpt
348
+ # end epoch ----------------------------------------------------------------------------------------------------
349
+ # end training
350
+
351
+ if rank in [-1, 0]:
352
+ # Strip optimizers
353
+ n = ('_' if len(opt.name) and not opt.name.isnumeric() else '') + opt.name
354
+ fresults, flast, fbest = 'results%s.txt' % n, wdir + 'last%s.pt' % n, wdir + 'best%s.pt' % n
355
+ for f1, f2 in zip([wdir + 'last.pt', wdir + 'best.pt', 'results.txt'], [flast, fbest, fresults]):
356
+ if os.path.exists(f1):
357
+ os.rename(f1, f2) # rename
358
+ ispt = f2.endswith('.pt') # is *.pt
359
+ strip_optimizer(f2) if ispt else None # strip optimizer
360
+ os.system('gsutil cp %s gs://%s/weights' % (f2, opt.bucket)) if opt.bucket and ispt else None # upload
361
+ # Finish
362
+ if not opt.evolve:
363
+ plot_results(save_dir=log_dir) # save as results.png
364
+ print('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
365
+
366
+ dist.destroy_process_group() if rank not in [-1, 0] else None
367
+ torch.cuda.empty_cache()
368
+ return results
369
+
370
+
371
+ if __name__ == '__main__':
372
+ parser = argparse.ArgumentParser()
373
+ parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
374
+ parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
375
+ parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
376
+ parser.add_argument('--hyp', type=str, default='', help='hyperparameters path, i.e. data/hyp.scratch.yaml')
377
+ parser.add_argument('--epochs', type=int, default=300)
378
+ parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
379
+ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='train,test sizes')
380
+ parser.add_argument('--rect', action='store_true', help='rectangular training')
381
+ parser.add_argument('--resume', nargs='?', const='get_last', default=False,
382
+ help='resume from given path/last.pt, or most recent run if blank')
383
+ parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
384
+ parser.add_argument('--notest', action='store_true', help='only test final epoch')
385
+ parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
386
+ parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
387
+ parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
388
+ parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
389
+ parser.add_argument('--name', default='', help='renames results.txt to results_name.txt if supplied')
390
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
391
+ parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
392
+ parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
393
+ parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
394
+ parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
395
+ parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
396
+ parser.add_argument('--logdir', type=str, default='runs/', help='logging directory')
397
+ opt = parser.parse_args()
398
+
399
+ # Resume
400
+ if opt.resume:
401
+ last = get_latest_run() if opt.resume == 'get_last' else opt.resume # resume from most recent run
402
+ if last and not opt.weights:
403
+ print(f'Resuming training from {last}')
404
+ opt.weights = last if opt.resume and not opt.weights else opt.weights
405
+ if opt.local_rank == -1 or ("RANK" in os.environ and os.environ["RANK"] == "0"):
406
+ check_git_status()
407
+
408
+ opt.hyp = opt.hyp or ('data/hyp.finetune.yaml' if opt.weights else 'data/hyp.scratch.yaml')
409
+ opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
410
+ assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
411
+
412
+ opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
413
+ device = select_device(opt.device, batch_size=opt.batch_size)
414
+ opt.total_batch_size = opt.batch_size
415
+ opt.world_size = 1
416
+ opt.global_rank = -1
417
+
418
+ # DDP mode
419
+ if opt.local_rank != -1:
420
+ assert torch.cuda.device_count() > opt.local_rank
421
+ torch.cuda.set_device(opt.local_rank)
422
+ device = torch.device('cuda', opt.local_rank)
423
+ dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
424
+ opt.world_size = dist.get_world_size()
425
+ opt.global_rank = dist.get_rank()
426
+ assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
427
+ opt.batch_size = opt.total_batch_size // opt.world_size
428
+
429
+ print(opt)
430
+ with open(opt.hyp) as f:
431
+ hyp = yaml.load(f, Loader=yaml.FullLoader) # load hyps
432
+
433
+ # Train
434
+ if not opt.evolve:
435
+ tb_writer = None
436
+ if opt.global_rank in [-1, 0]:
437
+ print('Start Tensorboard with "tensorboard --logdir %s", view at http://localhost:6006/' % opt.logdir)
438
+ tb_writer = SummaryWriter(log_dir=increment_dir(Path(opt.logdir) / 'exp', opt.name)) # runs/exp
439
+
440
+ train(hyp, opt, device, tb_writer)
441
+
442
+ # Evolve hyperparameters (optional)
443
+ else:
444
+ # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
445
+ meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
446
+ 'momentum': (0.1, 0.6, 0.98), # SGD momentum/Adam beta1
447
+ 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
448
+ 'giou': (1, 0.02, 0.2), # GIoU loss gain
449
+ 'cls': (1, 0.2, 4.0), # cls loss gain
450
+ 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
451
+ 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
452
+ 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
453
+ 'iou_t': (0, 0.1, 0.7), # IoU training threshold
454
+ 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
455
+ 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
456
+ 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
457
+ 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
458
+ 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
459
+ 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
460
+ 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
461
+ 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
462
+ 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
463
+ 'perspective': (1, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
464
+ 'flipud': (0, 0.0, 1.0), # image flip up-down (probability)
465
+ 'fliplr': (1, 0.0, 1.0), # image flip left-right (probability)
466
+ 'mixup': (1, 0.0, 1.0)} # image mixup (probability)
467
+
468
+ assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
469
+ opt.notest, opt.nosave = True, True # only test/save final epoch
470
+ # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
471
+ yaml_file = Path('runs/evolve/hyp_evolved.yaml') # save best result here
472
+ if opt.bucket:
473
+ os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
474
+
475
+ for _ in range(100): # generations to evolve
476
+ if os.path.exists('evolve.txt'): # if evolve.txt exists: select best hyps and mutate
477
+ # Select parent(s)
478
+ parent = 'single' # parent selection method: 'single' or 'weighted'
479
+ x = np.loadtxt('evolve.txt', ndmin=2)
480
+ n = min(5, len(x)) # number of previous results to consider
481
+ x = x[np.argsort(-fitness(x))][:n] # top n mutations
482
+ w = fitness(x) - fitness(x).min() # weights
483
+ if parent == 'single' or len(x) == 1:
484
+ # x = x[random.randint(0, n - 1)] # random selection
485
+ x = x[random.choices(range(n), weights=w)[0]] # weighted selection
486
+ elif parent == 'weighted':
487
+ x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
488
+
489
+ # Mutate
490
+ mp, s = 0.9, 0.2 # mutation probability, sigma
491
+ npr = np.random
492
+ npr.seed(int(time.time()))
493
+ g = np.array([x[0] for x in meta.values()]) # gains 0-1
494
+ ng = len(meta)
495
+ v = np.ones(ng)
496
+ while all(v == 1): # mutate until a change occurs (prevent duplicates)
497
+ v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
498
+ for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
499
+ hyp[k] = float(x[i + 7] * v[i]) # mutate
500
+
501
+ # Constrain to limits
502
+ for k, v in meta.items():
503
+ hyp[k] = max(hyp[k], v[1]) # lower limit
504
+ hyp[k] = min(hyp[k], v[2]) # upper limit
505
+ hyp[k] = round(hyp[k], 5) # significant digits
506
+
507
+ # Train mutation
508
+ results = train(hyp.copy(), opt, device)
509
+
510
+ # Write mutation results
511
+ print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
512
+
513
+ # Plot results
514
+ plot_evolution(yaml_file)
515
+ print('Hyperparameter evolution complete. Best results saved as: %s\nCommand to train a new model with these '
516
+ 'hyperparameters: $ python train.py --hyp %s' % (yaml_file, yaml_file))
yolov5_anime/utils/__init__.py ADDED
File without changes
yolov5_anime/utils/activations.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+
6
+ # Swish https://arxiv.org/pdf/1905.02244.pdf ---------------------------------------------------------------------------
7
+ class Swish(nn.Module): #
8
+ @staticmethod
9
+ def forward(x):
10
+ return x * torch.sigmoid(x)
11
+
12
+
13
+ class HardSwish(nn.Module):
14
+ @staticmethod
15
+ def forward(x):
16
+ return x * F.hardtanh(x + 3, 0., 6., True) / 6.
17
+
18
+
19
+ class MemoryEfficientSwish(nn.Module):
20
+ class F(torch.autograd.Function):
21
+ @staticmethod
22
+ def forward(ctx, x):
23
+ ctx.save_for_backward(x)
24
+ return x * torch.sigmoid(x)
25
+
26
+ @staticmethod
27
+ def backward(ctx, grad_output):
28
+ x = ctx.saved_tensors[0]
29
+ sx = torch.sigmoid(x)
30
+ return grad_output * (sx * (1 + x * (1 - sx)))
31
+
32
+ def forward(self, x):
33
+ return self.F.apply(x)
34
+
35
+
36
+ # Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
37
+ class Mish(nn.Module):
38
+ @staticmethod
39
+ def forward(x):
40
+ return x * F.softplus(x).tanh()
41
+
42
+
43
+ class MemoryEfficientMish(nn.Module):
44
+ class F(torch.autograd.Function):
45
+ @staticmethod
46
+ def forward(ctx, x):
47
+ ctx.save_for_backward(x)
48
+ return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
49
+
50
+ @staticmethod
51
+ def backward(ctx, grad_output):
52
+ x = ctx.saved_tensors[0]
53
+ sx = torch.sigmoid(x)
54
+ fx = F.softplus(x).tanh()
55
+ return grad_output * (fx + x * sx * (1 - fx * fx))
56
+
57
+ def forward(self, x):
58
+ return self.F.apply(x)
59
+
60
+
61
+ # FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
62
+ class FReLU(nn.Module):
63
+ def __init__(self, c1, k=3): # ch_in, kernel
64
+ super().__init__()
65
+ self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1)
66
+ self.bn = nn.BatchNorm2d(c1)
67
+
68
+ def forward(self, x):
69
+ return torch.max(x, self.bn(self.conv(x)))
yolov5_anime/utils/datasets.py ADDED
@@ -0,0 +1,907 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import math
3
+ import os
4
+ import random
5
+ import shutil
6
+ import time
7
+ from pathlib import Path
8
+ from threading import Thread
9
+
10
+ import cv2
11
+ import numpy as np
12
+ import torch
13
+ from PIL import Image, ExifTags
14
+ from torch.utils.data import Dataset
15
+ from tqdm import tqdm
16
+
17
+ from utils.general import xyxy2xywh, xywh2xyxy, torch_distributed_zero_first
18
+
19
+ help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
20
+ img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.dng']
21
+ vid_formats = ['.mov', '.avi', '.mp4', '.mpg', '.mpeg', '.m4v', '.wmv', '.mkv']
22
+
23
+ # Get orientation exif tag
24
+ for orientation in ExifTags.TAGS.keys():
25
+ if ExifTags.TAGS[orientation] == 'Orientation':
26
+ break
27
+
28
+
29
+ def get_hash(files):
30
+ # Returns a single hash value of a list of files
31
+ return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
32
+
33
+
34
+ def exif_size(img):
35
+ # Returns exif-corrected PIL size
36
+ s = img.size # (width, height)
37
+ try:
38
+ rotation = dict(img._getexif().items())[orientation]
39
+ if rotation == 6: # rotation 270
40
+ s = (s[1], s[0])
41
+ elif rotation == 8: # rotation 90
42
+ s = (s[1], s[0])
43
+ except:
44
+ pass
45
+
46
+ return s
47
+
48
+
49
+ def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
50
+ local_rank=-1, world_size=1):
51
+ # Make sure only the first process in DDP process the dataset first, and the following others can use the cache.
52
+ with torch_distributed_zero_first(local_rank):
53
+ dataset = LoadImagesAndLabels(path, imgsz, batch_size,
54
+ augment=augment, # augment images
55
+ hyp=hyp, # augmentation hyperparameters
56
+ rect=rect, # rectangular training
57
+ cache_images=cache,
58
+ single_cls=opt.single_cls,
59
+ stride=int(stride),
60
+ pad=pad)
61
+
62
+ batch_size = min(batch_size, len(dataset))
63
+ nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, 8]) # number of workers
64
+ train_sampler = torch.utils.data.distributed.DistributedSampler(dataset) if local_rank != -1 else None
65
+ dataloader = torch.utils.data.DataLoader(dataset,
66
+ batch_size=batch_size,
67
+ num_workers=nw,
68
+ sampler=train_sampler,
69
+ pin_memory=True,
70
+ collate_fn=LoadImagesAndLabels.collate_fn)
71
+ return dataloader, dataset
72
+
73
+
74
+ class LoadImages: # for inference
75
+ def __init__(self, path, img_size=640):
76
+ p = str(Path(path)) # os-agnostic
77
+ p = os.path.abspath(p) # absolute path
78
+ if '*' in p:
79
+ files = sorted(glob.glob(p)) # glob
80
+ elif os.path.isdir(p):
81
+ files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir
82
+ elif os.path.isfile(p):
83
+ files = [p] # files
84
+ else:
85
+ raise Exception('ERROR: %s does not exist' % p)
86
+
87
+ images = [x for x in files if os.path.splitext(x)[-1].lower() in img_formats]
88
+ videos = [x for x in files if os.path.splitext(x)[-1].lower() in vid_formats]
89
+ ni, nv = len(images), len(videos)
90
+
91
+ self.img_size = img_size
92
+ self.files = images + videos
93
+ self.nf = ni + nv # number of files
94
+ self.video_flag = [False] * ni + [True] * nv
95
+ self.mode = 'images'
96
+ if any(videos):
97
+ self.new_video(videos[0]) # new video
98
+ else:
99
+ self.cap = None
100
+ assert self.nf > 0, 'No images or videos found in %s. Supported formats are:\nimages: %s\nvideos: %s' % \
101
+ (p, img_formats, vid_formats)
102
+
103
+ def __iter__(self):
104
+ self.count = 0
105
+ return self
106
+
107
+ def __next__(self):
108
+ if self.count == self.nf:
109
+ raise StopIteration
110
+ path = self.files[self.count]
111
+
112
+ if self.video_flag[self.count]:
113
+ # Read video
114
+ self.mode = 'video'
115
+ ret_val, img0 = self.cap.read()
116
+ if not ret_val:
117
+ self.count += 1
118
+ self.cap.release()
119
+ if self.count == self.nf: # last video
120
+ raise StopIteration
121
+ else:
122
+ path = self.files[self.count]
123
+ self.new_video(path)
124
+ ret_val, img0 = self.cap.read()
125
+
126
+ self.frame += 1
127
+ print('video %g/%g (%g/%g) %s: ' % (self.count + 1, self.nf, self.frame, self.nframes, path), end='')
128
+
129
+ else:
130
+ # Read image
131
+ self.count += 1
132
+ img0 = cv2.imread(path) # BGR
133
+ assert img0 is not None, 'Image Not Found ' + path
134
+ print('image %g/%g %s: ' % (self.count, self.nf, path), end='')
135
+
136
+ # Padded resize
137
+ img = letterbox(img0, new_shape=self.img_size)[0]
138
+
139
+ # Convert
140
+ img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
141
+ img = np.ascontiguousarray(img)
142
+
143
+ # cv2.imwrite(path + '.letterbox.jpg', 255 * img.transpose((1, 2, 0))[:, :, ::-1]) # save letterbox image
144
+ return path, img, img0, self.cap
145
+
146
+ def new_video(self, path):
147
+ self.frame = 0
148
+ self.cap = cv2.VideoCapture(path)
149
+ self.nframes = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
150
+
151
+ def __len__(self):
152
+ return self.nf # number of files
153
+
154
+
155
+ class LoadWebcam: # for inference
156
+ def __init__(self, pipe=0, img_size=640):
157
+ self.img_size = img_size
158
+
159
+ if pipe == '0':
160
+ pipe = 0 # local camera
161
+ # pipe = 'rtsp://192.168.1.64/1' # IP camera
162
+ # pipe = 'rtsp://username:[email protected]/1' # IP camera with login
163
+ # pipe = 'rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa' # IP traffic camera
164
+ # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg' # IP golf camera
165
+
166
+ # https://answers.opencv.org/question/215996/changing-gstreamer-pipeline-to-opencv-in-pythonsolved/
167
+ # pipe = '"rtspsrc location="rtsp://username:[email protected]/1" latency=10 ! appsink' # GStreamer
168
+
169
+ # https://answers.opencv.org/question/200787/video-acceleration-gstremer-pipeline-in-videocapture/
170
+ # https://stackoverflow.com/questions/54095699/install-gstreamer-support-for-opencv-python-package # install help
171
+ # pipe = "rtspsrc location=rtsp://root:[email protected]:554/axis-media/media.amp?videocodec=h264&resolution=3840x2160 protocols=GST_RTSP_LOWER_TRANS_TCP ! rtph264depay ! queue ! vaapih264dec ! videoconvert ! appsink" # GStreamer
172
+
173
+ self.pipe = pipe
174
+ self.cap = cv2.VideoCapture(pipe) # video capture object
175
+ self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size
176
+
177
+ def __iter__(self):
178
+ self.count = -1
179
+ return self
180
+
181
+ def __next__(self):
182
+ self.count += 1
183
+ if cv2.waitKey(1) == ord('q'): # q to quit
184
+ self.cap.release()
185
+ cv2.destroyAllWindows()
186
+ raise StopIteration
187
+
188
+ # Read frame
189
+ if self.pipe == 0: # local camera
190
+ ret_val, img0 = self.cap.read()
191
+ img0 = cv2.flip(img0, 1) # flip left-right
192
+ else: # IP camera
193
+ n = 0
194
+ while True:
195
+ n += 1
196
+ self.cap.grab()
197
+ if n % 30 == 0: # skip frames
198
+ ret_val, img0 = self.cap.retrieve()
199
+ if ret_val:
200
+ break
201
+
202
+ # Print
203
+ assert ret_val, 'Camera Error %s' % self.pipe
204
+ img_path = 'webcam.jpg'
205
+ print('webcam %g: ' % self.count, end='')
206
+
207
+ # Padded resize
208
+ img = letterbox(img0, new_shape=self.img_size)[0]
209
+
210
+ # Convert
211
+ img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
212
+ img = np.ascontiguousarray(img)
213
+
214
+ return img_path, img, img0, None
215
+
216
+ def __len__(self):
217
+ return 0
218
+
219
+
220
+ class LoadStreams: # multiple IP or RTSP cameras
221
+ def __init__(self, sources='streams.txt', img_size=640):
222
+ self.mode = 'images'
223
+ self.img_size = img_size
224
+
225
+ if os.path.isfile(sources):
226
+ with open(sources, 'r') as f:
227
+ sources = [x.strip() for x in f.read().splitlines() if len(x.strip())]
228
+ else:
229
+ sources = [sources]
230
+
231
+ n = len(sources)
232
+ self.imgs = [None] * n
233
+ self.sources = sources
234
+ for i, s in enumerate(sources):
235
+ # Start the thread to read frames from the video stream
236
+ print('%g/%g: %s... ' % (i + 1, n, s), end='')
237
+ cap = cv2.VideoCapture(0 if s == '0' else s)
238
+ assert cap.isOpened(), 'Failed to open %s' % s
239
+ w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
240
+ h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
241
+ fps = cap.get(cv2.CAP_PROP_FPS) % 100
242
+ _, self.imgs[i] = cap.read() # guarantee first frame
243
+ thread = Thread(target=self.update, args=([i, cap]), daemon=True)
244
+ print(' success (%gx%g at %.2f FPS).' % (w, h, fps))
245
+ thread.start()
246
+ print('') # newline
247
+
248
+ # check for common shapes
249
+ s = np.stack([letterbox(x, new_shape=self.img_size)[0].shape for x in self.imgs], 0) # inference shapes
250
+ self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
251
+ if not self.rect:
252
+ print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
253
+
254
+ def update(self, index, cap):
255
+ # Read next stream frame in a daemon thread
256
+ n = 0
257
+ while cap.isOpened():
258
+ n += 1
259
+ # _, self.imgs[index] = cap.read()
260
+ cap.grab()
261
+ if n == 4: # read every 4th frame
262
+ _, self.imgs[index] = cap.retrieve()
263
+ n = 0
264
+ time.sleep(0.01) # wait time
265
+
266
+ def __iter__(self):
267
+ self.count = -1
268
+ return self
269
+
270
+ def __next__(self):
271
+ self.count += 1
272
+ img0 = self.imgs.copy()
273
+ if cv2.waitKey(1) == ord('q'): # q to quit
274
+ cv2.destroyAllWindows()
275
+ raise StopIteration
276
+
277
+ # Letterbox
278
+ img = [letterbox(x, new_shape=self.img_size, auto=self.rect)[0] for x in img0]
279
+
280
+ # Stack
281
+ img = np.stack(img, 0)
282
+
283
+ # Convert
284
+ img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to bsx3x416x416
285
+ img = np.ascontiguousarray(img)
286
+
287
+ return self.sources, img, img0, None
288
+
289
+ def __len__(self):
290
+ return 0 # 1E12 frames = 32 streams at 30 FPS for 30 years
291
+
292
+
293
+ class LoadImagesAndLabels(Dataset): # for training/testing
294
+ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
295
+ cache_images=False, single_cls=False, stride=32, pad=0.0):
296
+ try:
297
+ f = [] # image files
298
+ for p in path if isinstance(path, list) else [path]:
299
+ p = str(Path(p)) # os-agnostic
300
+ parent = str(Path(p).parent) + os.sep
301
+ if os.path.isfile(p): # file
302
+ with open(p, 'r') as t:
303
+ t = t.read().splitlines()
304
+ f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path
305
+ elif os.path.isdir(p): # folder
306
+ f += glob.iglob(p + os.sep + '*.*')
307
+ else:
308
+ raise Exception('%s does not exist' % p)
309
+ self.img_files = sorted(
310
+ [x.replace('/', os.sep) for x in f if os.path.splitext(x)[-1].lower() in img_formats])
311
+ except Exception as e:
312
+ raise Exception('Error loading data from %s: %s\nSee %s' % (path, e, help_url))
313
+
314
+ n = len(self.img_files)
315
+ assert n > 0, 'No images found in %s. See %s' % (path, help_url)
316
+ bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index
317
+ nb = bi[-1] + 1 # number of batches
318
+
319
+ self.n = n # number of images
320
+ self.batch = bi # batch index of image
321
+ self.img_size = img_size
322
+ self.augment = augment
323
+ self.hyp = hyp
324
+ self.image_weights = image_weights
325
+ self.rect = False if image_weights else rect
326
+ self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
327
+ self.mosaic_border = [-img_size // 2, -img_size // 2]
328
+ self.stride = stride
329
+
330
+ # Define labels
331
+ self.label_files = [x.replace('images', 'labels').replace(os.path.splitext(x)[-1], '.txt') for x in
332
+ self.img_files]
333
+
334
+ # Check cache
335
+ cache_path = str(Path(self.label_files[0]).parent) + '.cache' # cached labels
336
+ if os.path.isfile(cache_path):
337
+ cache = torch.load(cache_path) # load
338
+ if cache['hash'] != get_hash(self.label_files + self.img_files): # dataset changed
339
+ cache = self.cache_labels(cache_path) # re-cache
340
+ else:
341
+ cache = self.cache_labels(cache_path) # cache
342
+
343
+ # Get labels
344
+ labels, shapes = zip(*[cache[x] for x in self.img_files])
345
+ self.shapes = np.array(shapes, dtype=np.float64)
346
+ self.labels = list(labels)
347
+
348
+ # Rectangular Training https://github.com/ultralytics/yolov3/issues/232
349
+ if self.rect:
350
+ # Sort by aspect ratio
351
+ s = self.shapes # wh
352
+ ar = s[:, 1] / s[:, 0] # aspect ratio
353
+ irect = ar.argsort()
354
+ self.img_files = [self.img_files[i] for i in irect]
355
+ self.label_files = [self.label_files[i] for i in irect]
356
+ self.labels = [self.labels[i] for i in irect]
357
+ self.shapes = s[irect] # wh
358
+ ar = ar[irect]
359
+
360
+ # Set training image shapes
361
+ shapes = [[1, 1]] * nb
362
+ for i in range(nb):
363
+ ari = ar[bi == i]
364
+ mini, maxi = ari.min(), ari.max()
365
+ if maxi < 1:
366
+ shapes[i] = [maxi, 1]
367
+ elif mini > 1:
368
+ shapes[i] = [1, 1 / mini]
369
+
370
+ self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
371
+
372
+ # Cache labels
373
+ create_datasubset, extract_bounding_boxes, labels_loaded = False, False, False
374
+ nm, nf, ne, ns, nd = 0, 0, 0, 0, 0 # number missing, found, empty, datasubset, duplicate
375
+ pbar = tqdm(self.label_files)
376
+ for i, file in enumerate(pbar):
377
+ l = self.labels[i] # label
378
+ if l.shape[0]:
379
+ assert l.shape[1] == 5, '> 5 label columns: %s' % file
380
+ assert (l >= 0).all(), 'negative labels: %s' % file
381
+ assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels: %s' % file
382
+ if np.unique(l, axis=0).shape[0] < l.shape[0]: # duplicate rows
383
+ nd += 1 # print('WARNING: duplicate rows in %s' % self.label_files[i]) # duplicate rows
384
+ if single_cls:
385
+ l[:, 0] = 0 # force dataset into single-class mode
386
+ self.labels[i] = l
387
+ nf += 1 # file found
388
+
389
+ # Create subdataset (a smaller dataset)
390
+ if create_datasubset and ns < 1E4:
391
+ if ns == 0:
392
+ create_folder(path='./datasubset')
393
+ os.makedirs('./datasubset/images')
394
+ exclude_classes = 43
395
+ if exclude_classes not in l[:, 0]:
396
+ ns += 1
397
+ # shutil.copy(src=self.img_files[i], dst='./datasubset/images/') # copy image
398
+ with open('./datasubset/images.txt', 'a') as f:
399
+ f.write(self.img_files[i] + '\n')
400
+
401
+ # Extract object detection boxes for a second stage classifier
402
+ if extract_bounding_boxes:
403
+ p = Path(self.img_files[i])
404
+ img = cv2.imread(str(p))
405
+ h, w = img.shape[:2]
406
+ for j, x in enumerate(l):
407
+ f = '%s%sclassifier%s%g_%g_%s' % (p.parent.parent, os.sep, os.sep, x[0], j, p.name)
408
+ if not os.path.exists(Path(f).parent):
409
+ os.makedirs(Path(f).parent) # make new output folder
410
+
411
+ b = x[1:] * [w, h, w, h] # box
412
+ b[2:] = b[2:].max() # rectangle to square
413
+ b[2:] = b[2:] * 1.3 + 30 # pad
414
+ b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
415
+
416
+ b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
417
+ b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
418
+ assert cv2.imwrite(f, img[b[1]:b[3], b[0]:b[2]]), 'Failure extracting classifier boxes'
419
+ else:
420
+ ne += 1 # print('empty labels for image %s' % self.img_files[i]) # file empty
421
+ # os.system("rm '%s' '%s'" % (self.img_files[i], self.label_files[i])) # remove
422
+
423
+ pbar.desc = 'Scanning labels %s (%g found, %g missing, %g empty, %g duplicate, for %g images)' % (
424
+ cache_path, nf, nm, ne, nd, n)
425
+ if nf == 0:
426
+ s = 'WARNING: No labels found in %s. See %s' % (os.path.dirname(file) + os.sep, help_url)
427
+ print(s)
428
+ assert not augment, '%s. Can not train without labels.' % s
429
+
430
+ # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM)
431
+ self.imgs = [None] * n
432
+ if cache_images:
433
+ gb = 0 # Gigabytes of cached images
434
+ pbar = tqdm(range(len(self.img_files)), desc='Caching images')
435
+ self.img_hw0, self.img_hw = [None] * n, [None] * n
436
+ for i in pbar: # max 10k images
437
+ self.imgs[i], self.img_hw0[i], self.img_hw[i] = load_image(self, i) # img, hw_original, hw_resized
438
+ gb += self.imgs[i].nbytes
439
+ pbar.desc = 'Caching images (%.1fGB)' % (gb / 1E9)
440
+
441
+ def cache_labels(self, path='labels.cache'):
442
+ # Cache dataset labels, check images and read shapes
443
+ x = {} # dict
444
+ pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
445
+ for (img, label) in pbar:
446
+ try:
447
+ l = []
448
+ image = Image.open(img)
449
+ image.verify() # PIL verify
450
+ # _ = io.imread(img) # skimage verify (from skimage import io)
451
+ shape = exif_size(image) # image size
452
+ assert (shape[0] > 9) & (shape[1] > 9), 'image size <10 pixels'
453
+ if os.path.isfile(label):
454
+ with open(label, 'r') as f:
455
+ l = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32) # labels
456
+ if len(l) == 0:
457
+ l = np.zeros((0, 5), dtype=np.float32)
458
+ x[img] = [l, shape]
459
+ except Exception as e:
460
+ x[img] = [None, None]
461
+ print('WARNING: %s: %s' % (img, e))
462
+
463
+ x['hash'] = get_hash(self.label_files + self.img_files)
464
+ torch.save(x, path) # save for next time
465
+ return x
466
+
467
+ def __len__(self):
468
+ return len(self.img_files)
469
+
470
+ # def __iter__(self):
471
+ # self.count = -1
472
+ # print('ran dataset iter')
473
+ # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
474
+ # return self
475
+
476
+ def __getitem__(self, index):
477
+ if self.image_weights:
478
+ index = self.indices[index]
479
+
480
+ hyp = self.hyp
481
+ if self.mosaic:
482
+ # Load mosaic
483
+ img, labels = load_mosaic(self, index)
484
+ shapes = None
485
+
486
+ # MixUp https://arxiv.org/pdf/1710.09412.pdf
487
+ if random.random() < hyp['mixup']:
488
+ img2, labels2 = load_mosaic(self, random.randint(0, len(self.labels) - 1))
489
+ r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0
490
+ img = (img * r + img2 * (1 - r)).astype(np.uint8)
491
+ labels = np.concatenate((labels, labels2), 0)
492
+
493
+ else:
494
+ # Load image
495
+ img, (h0, w0), (h, w) = load_image(self, index)
496
+
497
+ # Letterbox
498
+ shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
499
+ img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
500
+ shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
501
+
502
+ # Load labels
503
+ labels = []
504
+ x = self.labels[index]
505
+ if x.size > 0:
506
+ # Normalized xywh to pixel xyxy format
507
+ labels = x.copy()
508
+ labels[:, 1] = ratio[0] * w * (x[:, 1] - x[:, 3] / 2) + pad[0] # pad width
509
+ labels[:, 2] = ratio[1] * h * (x[:, 2] - x[:, 4] / 2) + pad[1] # pad height
510
+ labels[:, 3] = ratio[0] * w * (x[:, 1] + x[:, 3] / 2) + pad[0]
511
+ labels[:, 4] = ratio[1] * h * (x[:, 2] + x[:, 4] / 2) + pad[1]
512
+
513
+ if self.augment:
514
+ # Augment imagespace
515
+ if not self.mosaic:
516
+ img, labels = random_perspective(img, labels,
517
+ degrees=hyp['degrees'],
518
+ translate=hyp['translate'],
519
+ scale=hyp['scale'],
520
+ shear=hyp['shear'],
521
+ perspective=hyp['perspective'])
522
+
523
+ # Augment colorspace
524
+ augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
525
+
526
+ # Apply cutouts
527
+ # if random.random() < 0.9:
528
+ # labels = cutout(img, labels)
529
+
530
+ nL = len(labels) # number of labels
531
+ if nL:
532
+ labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh
533
+ labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1
534
+ labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1
535
+
536
+ if self.augment:
537
+ # flip up-down
538
+ if random.random() < hyp['flipud']:
539
+ img = np.flipud(img)
540
+ if nL:
541
+ labels[:, 2] = 1 - labels[:, 2]
542
+
543
+ # flip left-right
544
+ if random.random() < hyp['fliplr']:
545
+ img = np.fliplr(img)
546
+ if nL:
547
+ labels[:, 1] = 1 - labels[:, 1]
548
+
549
+ labels_out = torch.zeros((nL, 6))
550
+ if nL:
551
+ labels_out[:, 1:] = torch.from_numpy(labels)
552
+
553
+ # Convert
554
+ img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
555
+ img = np.ascontiguousarray(img)
556
+
557
+ return torch.from_numpy(img), labels_out, self.img_files[index], shapes
558
+
559
+ @staticmethod
560
+ def collate_fn(batch):
561
+ img, label, path, shapes = zip(*batch) # transposed
562
+ for i, l in enumerate(label):
563
+ l[:, 0] = i # add target image index for build_targets()
564
+ return torch.stack(img, 0), torch.cat(label, 0), path, shapes
565
+
566
+
567
+ # Ancillary functions --------------------------------------------------------------------------------------------------
568
+ def load_image(self, index):
569
+ # loads 1 image from dataset, returns img, original hw, resized hw
570
+ img = self.imgs[index]
571
+ if img is None: # not cached
572
+ path = self.img_files[index]
573
+ img = cv2.imread(path) # BGR
574
+ assert img is not None, 'Image Not Found ' + path
575
+ h0, w0 = img.shape[:2] # orig hw
576
+ r = self.img_size / max(h0, w0) # resize image to img_size
577
+ if r != 1: # always resize down, only resize up if training with augmentation
578
+ interp = cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR
579
+ img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
580
+ return img, (h0, w0), img.shape[:2] # img, hw_original, hw_resized
581
+ else:
582
+ return self.imgs[index], self.img_hw0[index], self.img_hw[index] # img, hw_original, hw_resized
583
+
584
+
585
+ def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
586
+ r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
587
+ hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
588
+ dtype = img.dtype # uint8
589
+
590
+ x = np.arange(0, 256, dtype=np.int16)
591
+ lut_hue = ((x * r[0]) % 180).astype(dtype)
592
+ lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
593
+ lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
594
+
595
+ img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
596
+ cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
597
+
598
+ # Histogram equalization
599
+ # if random.random() < 0.2:
600
+ # for i in range(3):
601
+ # img[:, :, i] = cv2.equalizeHist(img[:, :, i])
602
+
603
+
604
+ def load_mosaic(self, index):
605
+ # loads images in a mosaic
606
+
607
+ labels4 = []
608
+ s = self.img_size
609
+ yc, xc = s, s # mosaic center x, y
610
+ indices = [index] + [random.randint(0, len(self.labels) - 1) for _ in range(3)] # 3 additional image indices
611
+ for i, index in enumerate(indices):
612
+ # Load image
613
+ img, _, (h, w) = load_image(self, index)
614
+
615
+ # place img in img4
616
+ if i == 0: # top left
617
+ img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
618
+ x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
619
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
620
+ elif i == 1: # top right
621
+ x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
622
+ x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
623
+ elif i == 2: # bottom left
624
+ x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
625
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, max(xc, w), min(y2a - y1a, h)
626
+ elif i == 3: # bottom right
627
+ x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
628
+ x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
629
+
630
+ img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
631
+ padw = x1a - x1b
632
+ padh = y1a - y1b
633
+
634
+ # Labels
635
+ x = self.labels[index]
636
+ labels = x.copy()
637
+ if x.size > 0: # Normalized xywh to pixel xyxy format
638
+ labels[:, 1] = w * (x[:, 1] - x[:, 3] / 2) + padw
639
+ labels[:, 2] = h * (x[:, 2] - x[:, 4] / 2) + padh
640
+ labels[:, 3] = w * (x[:, 1] + x[:, 3] / 2) + padw
641
+ labels[:, 4] = h * (x[:, 2] + x[:, 4] / 2) + padh
642
+ labels4.append(labels)
643
+
644
+ # Concat/clip labels
645
+ if len(labels4):
646
+ labels4 = np.concatenate(labels4, 0)
647
+ # np.clip(labels4[:, 1:] - s / 2, 0, s, out=labels4[:, 1:]) # use with center crop
648
+ np.clip(labels4[:, 1:], 0, 2 * s, out=labels4[:, 1:]) # use with random_affine
649
+
650
+ # Replicate
651
+ # img4, labels4 = replicate(img4, labels4)
652
+
653
+ # Augment
654
+ # img4 = img4[s // 2: int(s * 1.5), s // 2:int(s * 1.5)] # center crop (WARNING, requires box pruning)
655
+ img4, labels4 = random_perspective(img4, labels4,
656
+ degrees=self.hyp['degrees'],
657
+ translate=self.hyp['translate'],
658
+ scale=self.hyp['scale'],
659
+ shear=self.hyp['shear'],
660
+ perspective=self.hyp['perspective'],
661
+ border=self.mosaic_border) # border to remove
662
+
663
+ return img4, labels4
664
+
665
+
666
+ def replicate(img, labels):
667
+ # Replicate labels
668
+ h, w = img.shape[:2]
669
+ boxes = labels[:, 1:].astype(int)
670
+ x1, y1, x2, y2 = boxes.T
671
+ s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
672
+ for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
673
+ x1b, y1b, x2b, y2b = boxes[i]
674
+ bh, bw = y2b - y1b, x2b - x1b
675
+ yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
676
+ x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
677
+ img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
678
+ labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
679
+
680
+ return img, labels
681
+
682
+
683
+ def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
684
+ # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
685
+ shape = img.shape[:2] # current shape [height, width]
686
+ if isinstance(new_shape, int):
687
+ new_shape = (new_shape, new_shape)
688
+
689
+ # Scale ratio (new / old)
690
+ r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
691
+ if not scaleup: # only scale down, do not scale up (for better test mAP)
692
+ r = min(r, 1.0)
693
+
694
+ # Compute padding
695
+ ratio = r, r # width, height ratios
696
+ new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
697
+ dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
698
+ if auto: # minimum rectangle
699
+ dw, dh = np.mod(dw, 64), np.mod(dh, 64) # wh padding
700
+ elif scaleFill: # stretch
701
+ dw, dh = 0.0, 0.0
702
+ new_unpad = (new_shape[1], new_shape[0])
703
+ ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
704
+
705
+ dw /= 2 # divide padding into 2 sides
706
+ dh /= 2
707
+
708
+ if shape[::-1] != new_unpad: # resize
709
+ img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
710
+ top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
711
+ left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
712
+ img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
713
+ return img, ratio, (dw, dh)
714
+
715
+
716
+ def random_perspective(img, targets=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, border=(0, 0)):
717
+ # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
718
+ # targets = [cls, xyxy]
719
+
720
+ height = img.shape[0] + border[0] * 2 # shape(h,w,c)
721
+ width = img.shape[1] + border[1] * 2
722
+
723
+ # Center
724
+ C = np.eye(3)
725
+ C[0, 2] = -img.shape[1] / 2 # x translation (pixels)
726
+ C[1, 2] = -img.shape[0] / 2 # y translation (pixels)
727
+
728
+ # Perspective
729
+ P = np.eye(3)
730
+ P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
731
+ P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
732
+
733
+ # Rotation and Scale
734
+ R = np.eye(3)
735
+ a = random.uniform(-degrees, degrees)
736
+ # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
737
+ s = random.uniform(1 - scale, 1 + scale)
738
+ # s = 2 ** random.uniform(-scale, scale)
739
+ R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
740
+
741
+ # Shear
742
+ S = np.eye(3)
743
+ S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
744
+ S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
745
+
746
+ # Translation
747
+ T = np.eye(3)
748
+ T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
749
+ T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
750
+
751
+ # Combined rotation matrix
752
+ M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
753
+ if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
754
+ if perspective:
755
+ img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
756
+ else: # affine
757
+ img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
758
+
759
+ # Visualize
760
+ # import matplotlib.pyplot as plt
761
+ # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
762
+ # ax[0].imshow(img[:, :, ::-1]) # base
763
+ # ax[1].imshow(img2[:, :, ::-1]) # warped
764
+
765
+ # Transform label coordinates
766
+ n = len(targets)
767
+ if n:
768
+ # warp points
769
+ xy = np.ones((n * 4, 3))
770
+ xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
771
+ xy = xy @ M.T # transform
772
+ if perspective:
773
+ xy = (xy[:, :2] / xy[:, 2:3]).reshape(n, 8) # rescale
774
+ else: # affine
775
+ xy = xy[:, :2].reshape(n, 8)
776
+
777
+ # create new boxes
778
+ x = xy[:, [0, 2, 4, 6]]
779
+ y = xy[:, [1, 3, 5, 7]]
780
+ xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
781
+
782
+ # # apply angle-based reduction of bounding boxes
783
+ # radians = a * math.pi / 180
784
+ # reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
785
+ # x = (xy[:, 2] + xy[:, 0]) / 2
786
+ # y = (xy[:, 3] + xy[:, 1]) / 2
787
+ # w = (xy[:, 2] - xy[:, 0]) * reduction
788
+ # h = (xy[:, 3] - xy[:, 1]) * reduction
789
+ # xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
790
+
791
+ # clip boxes
792
+ xy[:, [0, 2]] = xy[:, [0, 2]].clip(0, width)
793
+ xy[:, [1, 3]] = xy[:, [1, 3]].clip(0, height)
794
+
795
+ # filter candidates
796
+ i = box_candidates(box1=targets[:, 1:5].T * s, box2=xy.T)
797
+ targets = targets[i]
798
+ targets[:, 1:5] = xy[i]
799
+
800
+ return img, targets
801
+
802
+
803
+ def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.2): # box1(4,n), box2(4,n)
804
+ # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
805
+ w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
806
+ w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
807
+ ar = np.maximum(w2 / (h2 + 1e-16), h2 / (w2 + 1e-16)) # aspect ratio
808
+ return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + 1e-16) > area_thr) & (ar < ar_thr) # candidates
809
+
810
+
811
+ def cutout(image, labels):
812
+ # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
813
+ h, w = image.shape[:2]
814
+
815
+ def bbox_ioa(box1, box2):
816
+ # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2
817
+ box2 = box2.transpose()
818
+
819
+ # Get the coordinates of bounding boxes
820
+ b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
821
+ b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
822
+
823
+ # Intersection area
824
+ inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
825
+ (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
826
+
827
+ # box2 area
828
+ box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
829
+
830
+ # Intersection over box2 area
831
+ return inter_area / box2_area
832
+
833
+ # create random masks
834
+ scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
835
+ for s in scales:
836
+ mask_h = random.randint(1, int(h * s))
837
+ mask_w = random.randint(1, int(w * s))
838
+
839
+ # box
840
+ xmin = max(0, random.randint(0, w) - mask_w // 2)
841
+ ymin = max(0, random.randint(0, h) - mask_h // 2)
842
+ xmax = min(w, xmin + mask_w)
843
+ ymax = min(h, ymin + mask_h)
844
+
845
+ # apply random color mask
846
+ image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
847
+
848
+ # return unobscured labels
849
+ if len(labels) and s > 0.03:
850
+ box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
851
+ ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area
852
+ labels = labels[ioa < 0.60] # remove >60% obscured labels
853
+
854
+ return labels
855
+
856
+
857
+ def reduce_img_size(path='path/images', img_size=1024): # from utils.datasets import *; reduce_img_size()
858
+ # creates a new ./images_reduced folder with reduced size images of maximum size img_size
859
+ path_new = path + '_reduced' # reduced images path
860
+ create_folder(path_new)
861
+ for f in tqdm(glob.glob('%s/*.*' % path)):
862
+ try:
863
+ img = cv2.imread(f)
864
+ h, w = img.shape[:2]
865
+ r = img_size / max(h, w) # size ratio
866
+ if r < 1.0:
867
+ img = cv2.resize(img, (int(w * r), int(h * r)), interpolation=cv2.INTER_AREA) # _LINEAR fastest
868
+ fnew = f.replace(path, path_new) # .replace(Path(f).suffix, '.jpg')
869
+ cv2.imwrite(fnew, img)
870
+ except:
871
+ print('WARNING: image failure %s' % f)
872
+
873
+
874
+ def recursive_dataset2bmp(dataset='path/dataset_bmp'): # from utils.datasets import *; recursive_dataset2bmp()
875
+ # Converts dataset to bmp (for faster training)
876
+ formats = [x.lower() for x in img_formats] + [x.upper() for x in img_formats]
877
+ for a, b, files in os.walk(dataset):
878
+ for file in tqdm(files, desc=a):
879
+ p = a + '/' + file
880
+ s = Path(file).suffix
881
+ if s == '.txt': # replace text
882
+ with open(p, 'r') as f:
883
+ lines = f.read()
884
+ for f in formats:
885
+ lines = lines.replace(f, '.bmp')
886
+ with open(p, 'w') as f:
887
+ f.write(lines)
888
+ elif s in formats: # replace image
889
+ cv2.imwrite(p.replace(s, '.bmp'), cv2.imread(p))
890
+ if s != '.bmp':
891
+ os.system("rm '%s'" % p)
892
+
893
+
894
+ def imagelist2folder(path='path/images.txt'): # from utils.datasets import *; imagelist2folder()
895
+ # Copies all the images in a text file (list of images) into a folder
896
+ create_folder(path[:-4])
897
+ with open(path, 'r') as f:
898
+ for line in f.read().splitlines():
899
+ os.system('cp "%s" %s' % (line, path[:-4]))
900
+ print(line)
901
+
902
+
903
+ def create_folder(path='./new'):
904
+ # Create folder
905
+ if os.path.exists(path):
906
+ shutil.rmtree(path) # delete output folder
907
+ os.makedirs(path) # make new output folder
yolov5_anime/utils/general.py ADDED
@@ -0,0 +1,1284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import math
3
+ import os
4
+ import random
5
+ import shutil
6
+ import subprocess
7
+ import time
8
+ from contextlib import contextmanager
9
+ from copy import copy
10
+ from pathlib import Path
11
+ from sys import platform
12
+
13
+ import cv2
14
+ import matplotlib
15
+ import matplotlib.pyplot as plt
16
+ import numpy as np
17
+ import torch
18
+ import torch.nn as nn
19
+ import torchvision
20
+ import yaml
21
+
22
+ # SciPy is optional for inference. Some helper functions (e.g. kmeans anchors, signal filtering)
23
+ # use SciPy, but face detection + NMS do not. On some environments SciPy may be installed but
24
+ # incompatible with the installed NumPy (e.g. missing `numpy.exceptions`), so we guard imports.
25
+ _SCIPY_IMPORT_ERROR = None
26
+ try:
27
+ from scipy.cluster.vq import kmeans # type: ignore
28
+ from scipy.signal import butter, filtfilt # type: ignore
29
+ except Exception as _e: # noqa: BLE001
30
+ kmeans = None
31
+ butter = None
32
+ filtfilt = None
33
+ _SCIPY_IMPORT_ERROR = str(_e)
34
+ from tqdm import tqdm
35
+
36
+ from utils.torch_utils import init_seeds, is_parallel
37
+
38
+ # Set printoptions
39
+ torch.set_printoptions(linewidth=320, precision=5, profile='long')
40
+ np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
41
+ matplotlib.rc('font', **{'size': 11})
42
+
43
+ # Prevent OpenCV from multithreading (to use PyTorch DataLoader)
44
+ cv2.setNumThreads(0)
45
+
46
+
47
+ @contextmanager
48
+ def torch_distributed_zero_first(local_rank: int):
49
+ """
50
+ Decorator to make all processes in distributed training wait for each local_master to do something.
51
+ """
52
+ if local_rank not in [-1, 0]:
53
+ torch.distributed.barrier()
54
+ yield
55
+ if local_rank == 0:
56
+ torch.distributed.barrier()
57
+
58
+
59
+ def init_seeds(seed=0):
60
+ random.seed(seed)
61
+ np.random.seed(seed)
62
+ init_seeds(seed=seed)
63
+
64
+
65
+ def get_latest_run(search_dir='./runs'):
66
+ # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
67
+ last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
68
+ return max(last_list, key=os.path.getctime)
69
+
70
+
71
+ def check_git_status():
72
+ # Suggest 'git pull' if repo is out of date
73
+ if platform in ['linux', 'darwin'] and not os.path.isfile('/.dockerenv'):
74
+ s = subprocess.check_output('if [ -d .git ]; then git fetch && git status -uno; fi', shell=True).decode('utf-8')
75
+ if 'Your branch is behind' in s:
76
+ print(s[s.find('Your branch is behind'):s.find('\n\n')] + '\n')
77
+
78
+
79
+ def check_img_size(img_size, s=32):
80
+ # Verify img_size is a multiple of stride s
81
+ new_size = make_divisible(img_size, int(s)) # ceil gs-multiple
82
+ if new_size != img_size:
83
+ print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
84
+ return new_size
85
+
86
+
87
+ def check_anchors(dataset, model, thr=4.0, imgsz=640):
88
+ # Check anchor fit to data, recompute if necessary
89
+ print('\nAnalyzing anchors... ', end='')
90
+ m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
91
+ shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
92
+ scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
93
+ wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
94
+
95
+ def metric(k): # compute metric
96
+ r = wh[:, None] / k[None]
97
+ x = torch.min(r, 1. / r).min(2)[0] # ratio metric
98
+ best = x.max(1)[0] # best_x
99
+ aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
100
+ bpr = (best > 1. / thr).float().mean() # best possible recall
101
+ return bpr, aat
102
+
103
+ bpr, aat = metric(m.anchor_grid.clone().cpu().view(-1, 2))
104
+ print('anchors/target = %.2f, Best Possible Recall (BPR) = %.4f' % (aat, bpr), end='')
105
+ if bpr < 0.98: # threshold to recompute
106
+ print('. Attempting to generate improved anchors, please wait...' % bpr)
107
+ na = m.anchor_grid.numel() // 2 # number of anchors
108
+ new_anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
109
+ new_bpr = metric(new_anchors.reshape(-1, 2))[0]
110
+ if new_bpr > bpr: # replace anchors
111
+ new_anchors = torch.tensor(new_anchors, device=m.anchors.device).type_as(m.anchors)
112
+ m.anchor_grid[:] = new_anchors.clone().view_as(m.anchor_grid) # for inference
113
+ m.anchors[:] = new_anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
114
+ check_anchor_order(m)
115
+ print('New anchors saved to model. Update model *.yaml to use these anchors in the future.')
116
+ else:
117
+ print('Original anchors better than new anchors. Proceeding with original anchors.')
118
+ print('') # newline
119
+
120
+
121
+ def check_anchor_order(m):
122
+ # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
123
+ a = m.anchor_grid.prod(-1).view(-1) # anchor area
124
+ da = a[-1] - a[0] # delta a
125
+ ds = m.stride[-1] - m.stride[0] # delta s
126
+ if da.sign() != ds.sign(): # same order
127
+ print('Reversing anchor order')
128
+ m.anchors[:] = m.anchors.flip(0)
129
+ m.anchor_grid[:] = m.anchor_grid.flip(0)
130
+
131
+
132
+ def check_file(file):
133
+ # Searches for file if not found locally
134
+ if os.path.isfile(file) or file == '':
135
+ return file
136
+ else:
137
+ files = glob.glob('./**/' + file, recursive=True) # find file
138
+ assert len(files), 'File Not Found: %s' % file # assert file was found
139
+ return files[0] # return first file if multiple found
140
+
141
+
142
+ def check_dataset(dict):
143
+ # Download dataset if not found
144
+ train, val = os.path.abspath(dict['train']), os.path.abspath(dict['val']) # data paths
145
+ if not (os.path.exists(train) and os.path.exists(val)):
146
+ print('\nWARNING: Dataset not found, nonexistant paths: %s' % [train, val])
147
+ if 'download' in dict:
148
+ s = dict['download']
149
+ print('Attempting autodownload from: %s' % s)
150
+ if s.startswith('http') and s.endswith('.zip'): # URL
151
+ f = Path(s).name # filename
152
+ torch.hub.download_url_to_file(s, f)
153
+ r = os.system('unzip -q %s -d ../ && rm %s' % (f, f))
154
+ else: # bash script
155
+ r = os.system(s)
156
+ print('Dataset autodownload %s\n' % ('success' if r == 0 else 'failure')) # analyze return value
157
+ else:
158
+ Exception('Dataset autodownload unavailable.')
159
+
160
+
161
+ def make_divisible(x, divisor):
162
+ # Returns x evenly divisble by divisor
163
+ return math.ceil(x / divisor) * divisor
164
+
165
+
166
+ def labels_to_class_weights(labels, nc=80):
167
+ # Get class weights (inverse frequency) from training labels
168
+ if labels[0] is None: # no labels loaded
169
+ return torch.Tensor()
170
+
171
+ labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
172
+ classes = labels[:, 0].astype(np.int) # labels = [class xywh]
173
+ weights = np.bincount(classes, minlength=nc) # occurences per class
174
+
175
+ # Prepend gridpoint count (for uCE trianing)
176
+ # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
177
+ # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
178
+
179
+ weights[weights == 0] = 1 # replace empty bins with 1
180
+ weights = 1 / weights # number of targets per class
181
+ weights /= weights.sum() # normalize
182
+ return torch.from_numpy(weights)
183
+
184
+
185
+ def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
186
+ # Produces image weights based on class mAPs
187
+ n = len(labels)
188
+ class_counts = np.array([np.bincount(labels[i][:, 0].astype(np.int), minlength=nc) for i in range(n)])
189
+ image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
190
+ # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample
191
+ return image_weights
192
+
193
+
194
+ def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
195
+ # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
196
+ # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
197
+ # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
198
+ # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
199
+ # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
200
+ x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
201
+ 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
202
+ 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
203
+ return x
204
+
205
+
206
+ def xyxy2xywh(x):
207
+ # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
208
+ y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
209
+ y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center
210
+ y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center
211
+ y[:, 2] = x[:, 2] - x[:, 0] # width
212
+ y[:, 3] = x[:, 3] - x[:, 1] # height
213
+ return y
214
+
215
+
216
+ def xywh2xyxy(x):
217
+ # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
218
+ y = torch.zeros_like(x) if isinstance(x, torch.Tensor) else np.zeros_like(x)
219
+ y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
220
+ y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
221
+ y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
222
+ y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
223
+ return y
224
+
225
+
226
+ def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
227
+ # Rescale coords (xyxy) from img1_shape to img0_shape
228
+ if ratio_pad is None: # calculate from img0_shape
229
+ gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
230
+ pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
231
+ else:
232
+ gain = ratio_pad[0][0]
233
+ pad = ratio_pad[1]
234
+
235
+ coords[:, [0, 2]] -= pad[0] # x padding
236
+ coords[:, [1, 3]] -= pad[1] # y padding
237
+ coords[:, :4] /= gain
238
+ clip_coords(coords, img0_shape)
239
+ return coords
240
+
241
+
242
+ def clip_coords(boxes, img_shape):
243
+ # Clip bounding xyxy bounding boxes to image shape (height, width)
244
+ boxes[:, 0].clamp_(0, img_shape[1]) # x1
245
+ boxes[:, 1].clamp_(0, img_shape[0]) # y1
246
+ boxes[:, 2].clamp_(0, img_shape[1]) # x2
247
+ boxes[:, 3].clamp_(0, img_shape[0]) # y2
248
+
249
+
250
+ def ap_per_class(tp, conf, pred_cls, target_cls):
251
+ """ Compute the average precision, given the recall and precision curves.
252
+ Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
253
+ # Arguments
254
+ tp: True positives (nparray, nx1 or nx10).
255
+ conf: Objectness value from 0-1 (nparray).
256
+ pred_cls: Predicted object classes (nparray).
257
+ target_cls: True object classes (nparray).
258
+ # Returns
259
+ The average precision as computed in py-faster-rcnn.
260
+ """
261
+
262
+ # Sort by objectness
263
+ i = np.argsort(-conf)
264
+ tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
265
+
266
+ # Find unique classes
267
+ unique_classes = np.unique(target_cls)
268
+
269
+ # Create Precision-Recall curve and compute AP for each class
270
+ pr_score = 0.1 # score to evaluate P and R https://github.com/ultralytics/yolov3/issues/898
271
+ s = [unique_classes.shape[0], tp.shape[1]] # number class, number iou thresholds (i.e. 10 for mAP0.5...0.95)
272
+ ap, p, r = np.zeros(s), np.zeros(s), np.zeros(s)
273
+ for ci, c in enumerate(unique_classes):
274
+ i = pred_cls == c
275
+ n_gt = (target_cls == c).sum() # Number of ground truth objects
276
+ n_p = i.sum() # Number of predicted objects
277
+
278
+ if n_p == 0 or n_gt == 0:
279
+ continue
280
+ else:
281
+ # Accumulate FPs and TPs
282
+ fpc = (1 - tp[i]).cumsum(0)
283
+ tpc = tp[i].cumsum(0)
284
+
285
+ # Recall
286
+ recall = tpc / (n_gt + 1e-16) # recall curve
287
+ r[ci] = np.interp(-pr_score, -conf[i], recall[:, 0]) # r at pr_score, negative x, xp because xp decreases
288
+
289
+ # Precision
290
+ precision = tpc / (tpc + fpc) # precision curve
291
+ p[ci] = np.interp(-pr_score, -conf[i], precision[:, 0]) # p at pr_score
292
+
293
+ # AP from recall-precision curve
294
+ for j in range(tp.shape[1]):
295
+ ap[ci, j] = compute_ap(recall[:, j], precision[:, j])
296
+
297
+ # Plot
298
+ # fig, ax = plt.subplots(1, 1, figsize=(5, 5))
299
+ # ax.plot(recall, precision)
300
+ # ax.set_xlabel('Recall')
301
+ # ax.set_ylabel('Precision')
302
+ # ax.set_xlim(0, 1.01)
303
+ # ax.set_ylim(0, 1.01)
304
+ # fig.tight_layout()
305
+ # fig.savefig('PR_curve.png', dpi=300)
306
+
307
+ # Compute F1 score (harmonic mean of precision and recall)
308
+ f1 = 2 * p * r / (p + r + 1e-16)
309
+
310
+ return p, r, ap, f1, unique_classes.astype('int32')
311
+
312
+
313
+ def compute_ap(recall, precision):
314
+ """ Compute the average precision, given the recall and precision curves.
315
+ Source: https://github.com/rbgirshick/py-faster-rcnn.
316
+ # Arguments
317
+ recall: The recall curve (list).
318
+ precision: The precision curve (list).
319
+ # Returns
320
+ The average precision as computed in py-faster-rcnn.
321
+ """
322
+
323
+ # Append sentinel values to beginning and end
324
+ mrec = np.concatenate(([0.], recall, [min(recall[-1] + 1E-3, 1.)]))
325
+ mpre = np.concatenate(([0.], precision, [0.]))
326
+
327
+ # Compute the precision envelope
328
+ mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
329
+
330
+ # Integrate area under curve
331
+ method = 'interp' # methods: 'continuous', 'interp'
332
+ if method == 'interp':
333
+ x = np.linspace(0, 1, 101) # 101-point interp (COCO)
334
+ ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
335
+ else: # 'continuous'
336
+ i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
337
+ ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
338
+
339
+ return ap
340
+
341
+
342
+ def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False):
343
+ # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
344
+ box2 = box2.T
345
+
346
+ # Get the coordinates of bounding boxes
347
+ if x1y1x2y2: # x1, y1, x2, y2 = box1
348
+ b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
349
+ b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
350
+ else: # transform from xywh to xyxy
351
+ b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
352
+ b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
353
+ b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
354
+ b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
355
+
356
+ # Intersection area
357
+ inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
358
+ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
359
+
360
+ # Union Area
361
+ w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1
362
+ w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1
363
+ union = (w1 * h1 + 1e-16) + w2 * h2 - inter
364
+
365
+ iou = inter / union # iou
366
+ if GIoU or DIoU or CIoU:
367
+ cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
368
+ ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
369
+ if GIoU: # Generalized IoU https://arxiv.org/pdf/1902.09630.pdf
370
+ c_area = cw * ch + 1e-16 # convex area
371
+ return iou - (c_area - union) / c_area # GIoU
372
+ if DIoU or CIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
373
+ # convex diagonal squared
374
+ c2 = cw ** 2 + ch ** 2 + 1e-16
375
+ # centerpoint distance squared
376
+ rho2 = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2)) ** 2 / 4 + ((b2_y1 + b2_y2) - (b1_y1 + b1_y2)) ** 2 / 4
377
+ if DIoU:
378
+ return iou - rho2 / c2 # DIoU
379
+ elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
380
+ v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
381
+ with torch.no_grad():
382
+ alpha = v / (1 - iou + v + 1e-16)
383
+ return iou - (rho2 / c2 + v * alpha) # CIoU
384
+
385
+ return iou
386
+
387
+
388
+ def box_iou(box1, box2):
389
+ # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
390
+ """
391
+ Return intersection-over-union (Jaccard index) of boxes.
392
+ Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
393
+ Arguments:
394
+ box1 (Tensor[N, 4])
395
+ box2 (Tensor[M, 4])
396
+ Returns:
397
+ iou (Tensor[N, M]): the NxM matrix containing the pairwise
398
+ IoU values for every element in boxes1 and boxes2
399
+ """
400
+
401
+ def box_area(box):
402
+ # box = 4xn
403
+ return (box[2] - box[0]) * (box[3] - box[1])
404
+
405
+ area1 = box_area(box1.T)
406
+ area2 = box_area(box2.T)
407
+
408
+ # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
409
+ inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
410
+ return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
411
+
412
+
413
+ def wh_iou(wh1, wh2):
414
+ # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
415
+ wh1 = wh1[:, None] # [N,1,2]
416
+ wh2 = wh2[None] # [1,M,2]
417
+ inter = torch.min(wh1, wh2).prod(2) # [N,M]
418
+ return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter)
419
+
420
+
421
+ class FocalLoss(nn.Module):
422
+ # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
423
+ def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
424
+ super(FocalLoss, self).__init__()
425
+ self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
426
+ self.gamma = gamma
427
+ self.alpha = alpha
428
+ self.reduction = loss_fcn.reduction
429
+ self.loss_fcn.reduction = 'none' # required to apply FL to each element
430
+
431
+ def forward(self, pred, true):
432
+ loss = self.loss_fcn(pred, true)
433
+ # p_t = torch.exp(-loss)
434
+ # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
435
+
436
+ # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
437
+ pred_prob = torch.sigmoid(pred) # prob from logits
438
+ p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
439
+ alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
440
+ modulating_factor = (1.0 - p_t) ** self.gamma
441
+ loss *= alpha_factor * modulating_factor
442
+
443
+ if self.reduction == 'mean':
444
+ return loss.mean()
445
+ elif self.reduction == 'sum':
446
+ return loss.sum()
447
+ else: # 'none'
448
+ return loss
449
+
450
+
451
+ def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
452
+ # return positive, negative label smoothing BCE targets
453
+ return 1.0 - 0.5 * eps, 0.5 * eps
454
+
455
+
456
+ class BCEBlurWithLogitsLoss(nn.Module):
457
+ # BCEwithLogitLoss() with reduced missing label effects.
458
+ def __init__(self, alpha=0.05):
459
+ super(BCEBlurWithLogitsLoss, self).__init__()
460
+ self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss()
461
+ self.alpha = alpha
462
+
463
+ def forward(self, pred, true):
464
+ loss = self.loss_fcn(pred, true)
465
+ pred = torch.sigmoid(pred) # prob from logits
466
+ dx = pred - true # reduce only missing label effects
467
+ # dx = (pred - true).abs() # reduce missing label and false label effects
468
+ alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
469
+ loss *= alpha_factor
470
+ return loss.mean()
471
+
472
+
473
+ def compute_loss(p, targets, model): # predictions, targets, model
474
+ device = targets.device
475
+ lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
476
+ tcls, tbox, indices, anchors = build_targets(p, targets, model) # targets
477
+ h = model.hyp # hyperparameters
478
+
479
+ # Define criteria
480
+ BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([h['cls_pw']])).to(device)
481
+ BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([h['obj_pw']])).to(device)
482
+
483
+ # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
484
+ cp, cn = smooth_BCE(eps=0.0)
485
+
486
+ # Focal loss
487
+ g = h['fl_gamma'] # focal loss gamma
488
+ if g > 0:
489
+ BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
490
+
491
+ # Losses
492
+ nt = 0 # number of targets
493
+ np = len(p) # number of outputs
494
+ balance = [4.0, 1.0, 0.4] if np == 3 else [4.0, 1.0, 0.4, 0.1] # P3-5 or P3-6
495
+ for i, pi in enumerate(p): # layer index, layer predictions
496
+ b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
497
+ tobj = torch.zeros_like(pi[..., 0], device=device) # target obj
498
+
499
+ n = b.shape[0] # number of targets
500
+ if n:
501
+ nt += n # cumulative targets
502
+ ps = pi[b, a, gj, gi] # prediction subset corresponding to targets
503
+
504
+ # Regression
505
+ pxy = ps[:, :2].sigmoid() * 2. - 0.5
506
+ pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
507
+ pbox = torch.cat((pxy, pwh), 1).to(device) # predicted box
508
+ giou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # giou(prediction, target)
509
+ lbox += (1.0 - giou).mean() # giou loss
510
+
511
+ # Objectness
512
+ tobj[b, a, gj, gi] = (1.0 - model.gr) + model.gr * giou.detach().clamp(0).type(tobj.dtype) # giou ratio
513
+
514
+ # Classification
515
+ if model.nc > 1: # cls loss (only if multiple classes)
516
+ t = torch.full_like(ps[:, 5:], cn, device=device) # targets
517
+ t[range(n), tcls[i]] = cp
518
+ lcls += BCEcls(ps[:, 5:], t) # BCE
519
+
520
+ # Append targets to text file
521
+ # with open('targets.txt', 'a') as file:
522
+ # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
523
+
524
+ lobj += BCEobj(pi[..., 4], tobj) * balance[i] # obj loss
525
+
526
+ s = 3 / np # output count scaling
527
+ lbox *= h['giou'] * s
528
+ lobj *= h['obj'] * s * (1.4 if np == 4 else 1.)
529
+ lcls *= h['cls'] * s
530
+ bs = tobj.shape[0] # batch size
531
+
532
+ loss = lbox + lobj + lcls
533
+ return loss * bs, torch.cat((lbox, lobj, lcls, loss)).detach()
534
+
535
+
536
+ def build_targets(p, targets, model):
537
+ # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
538
+ det = model.module.model[-1] if is_parallel(model) else model.model[-1] # Detect() module
539
+ na, nt = det.na, targets.shape[0] # number of anchors, targets
540
+ tcls, tbox, indices, anch = [], [], [], []
541
+ gain = torch.ones(7, device=targets.device) # normalized to gridspace gain
542
+ ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
543
+ targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices
544
+
545
+ g = 0.5 # bias
546
+ off = torch.tensor([[0, 0],
547
+ [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m
548
+ # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
549
+ ], device=targets.device).float() * g # offsets
550
+
551
+ for i in range(det.nl):
552
+ anchors = det.anchors[i]
553
+ gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain
554
+
555
+ # Match targets to anchors
556
+ t = targets * gain
557
+ if nt:
558
+ # Matches
559
+ r = t[:, :, 4:6] / anchors[:, None] # wh ratio
560
+ j = torch.max(r, 1. / r).max(2)[0] < model.hyp['anchor_t'] # compare
561
+ # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
562
+ t = t[j] # filter
563
+
564
+ # Offsets
565
+ gxy = t[:, 2:4] # grid xy
566
+ gxi = gain[[2, 3]] - gxy # inverse
567
+ j, k = ((gxy % 1. < g) & (gxy > 1.)).T
568
+ l, m = ((gxi % 1. < g) & (gxi > 1.)).T
569
+ j = torch.stack((torch.ones_like(j), j, k, l, m))
570
+ t = t.repeat((5, 1, 1))[j]
571
+ offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
572
+ else:
573
+ t = targets[0]
574
+ offsets = 0
575
+
576
+ # Define
577
+ b, c = t[:, :2].long().T # image, class
578
+ gxy = t[:, 2:4] # grid xy
579
+ gwh = t[:, 4:6] # grid wh
580
+ gij = (gxy - offsets).long()
581
+ gi, gj = gij.T # grid xy indices
582
+
583
+ # Append
584
+ a = t[:, 6].long() # anchor indices
585
+ indices.append((b, a, gj, gi)) # image, anchor, grid indices
586
+ tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
587
+ anch.append(anchors[a]) # anchors
588
+ tcls.append(c) # class
589
+
590
+ return tcls, tbox, indices, anch
591
+
592
+
593
+ def non_max_suppression(prediction, conf_thres=0.1, iou_thres=0.6, merge=False, classes=None, agnostic=False):
594
+ """Performs Non-Maximum Suppression (NMS) on inference results
595
+
596
+ Returns:
597
+ detections with shape: nx6 (x1, y1, x2, y2, conf, cls)
598
+ """
599
+ if prediction.dtype is torch.float16:
600
+ prediction = prediction.float() # to FP32
601
+
602
+ nc = prediction[0].shape[1] - 5 # number of classes
603
+ xc = prediction[..., 4] > conf_thres # candidates
604
+
605
+ # Settings
606
+ min_wh, max_wh = 2, 4096 # (pixels) minimum and maximum box width and height
607
+ max_det = 300 # maximum number of detections per image
608
+ time_limit = 10.0 # seconds to quit after
609
+ redundant = True # require redundant detections
610
+ multi_label = nc > 1 # multiple labels per box (adds 0.5ms/img)
611
+
612
+ t = time.time()
613
+ output = [None] * prediction.shape[0]
614
+ for xi, x in enumerate(prediction): # image index, image inference
615
+ # Apply constraints
616
+ # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height
617
+ x = x[xc[xi]] # confidence
618
+
619
+ # If none remain process next image
620
+ if not x.shape[0]:
621
+ continue
622
+
623
+ # Compute conf
624
+ x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
625
+
626
+ # Box (center x, center y, width, height) to (x1, y1, x2, y2)
627
+ box = xywh2xyxy(x[:, :4])
628
+
629
+ # Detections matrix nx6 (xyxy, conf, cls)
630
+ if multi_label:
631
+ i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
632
+ x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
633
+ else: # best class only
634
+ conf, j = x[:, 5:].max(1, keepdim=True)
635
+ x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
636
+
637
+ # Filter by class
638
+ if classes:
639
+ x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
640
+
641
+ # Apply finite constraint
642
+ # if not torch.isfinite(x).all():
643
+ # x = x[torch.isfinite(x).all(1)]
644
+
645
+ # If none remain process next image
646
+ n = x.shape[0] # number of boxes
647
+ if not n:
648
+ continue
649
+
650
+ # Sort by confidence
651
+ # x = x[x[:, 4].argsort(descending=True)]
652
+
653
+ # Batched NMS
654
+ c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
655
+ boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
656
+ i = torchvision.ops.boxes.nms(boxes, scores, iou_thres)
657
+ if i.shape[0] > max_det: # limit detections
658
+ i = i[:max_det]
659
+ if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
660
+ try: # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
661
+ iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
662
+ weights = iou * scores[None] # box weights
663
+ x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
664
+ if redundant:
665
+ i = i[iou.sum(1) > 1] # require redundancy
666
+ except: # possible CUDA error https://github.com/ultralytics/yolov3/issues/1139
667
+ print(x, i, x.shape, i.shape)
668
+ pass
669
+
670
+ output[xi] = x[i]
671
+ if (time.time() - t) > time_limit:
672
+ break # time limit exceeded
673
+
674
+ return output
675
+
676
+
677
+ def strip_optimizer(f='weights/best.pt', s=''): # from utils.utils import *; strip_optimizer()
678
+ # Strip optimizer from 'f' to finalize training, optionally save as 's'
679
+ x = torch.load(f, map_location=torch.device('cpu'))
680
+ x['optimizer'] = None
681
+ x['training_results'] = None
682
+ x['epoch'] = -1
683
+ x['model'].half() # to FP16
684
+ for p in x['model'].parameters():
685
+ p.requires_grad = False
686
+ torch.save(x, s or f)
687
+ mb = os.path.getsize(s or f) / 1E6 # filesize
688
+ print('Optimizer stripped from %s,%s %.1fMB' % (f, (' saved as %s,' % s) if s else '', mb))
689
+
690
+
691
+ def coco_class_count(path='../coco/labels/train2014/'):
692
+ # Histogram of occurrences per class
693
+ nc = 80 # number classes
694
+ x = np.zeros(nc, dtype='int32')
695
+ files = sorted(glob.glob('%s/*.*' % path))
696
+ for i, file in enumerate(files):
697
+ labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5)
698
+ x += np.bincount(labels[:, 0].astype('int32'), minlength=nc)
699
+ print(i, len(files))
700
+
701
+
702
+ def coco_only_people(path='../coco/labels/train2017/'): # from utils.utils import *; coco_only_people()
703
+ # Find images with only people
704
+ files = sorted(glob.glob('%s/*.*' % path))
705
+ for i, file in enumerate(files):
706
+ labels = np.loadtxt(file, dtype=np.float32).reshape(-1, 5)
707
+ if all(labels[:, 0] == 0):
708
+ print(labels.shape[0], file)
709
+
710
+
711
+ def crop_images_random(path='../images/', scale=0.50): # from utils.utils import *; crop_images_random()
712
+ # crops images into random squares up to scale fraction
713
+ # WARNING: overwrites images!
714
+ for file in tqdm(sorted(glob.glob('%s/*.*' % path))):
715
+ img = cv2.imread(file) # BGR
716
+ if img is not None:
717
+ h, w = img.shape[:2]
718
+
719
+ # create random mask
720
+ a = 30 # minimum size (pixels)
721
+ mask_h = random.randint(a, int(max(a, h * scale))) # mask height
722
+ mask_w = mask_h # mask width
723
+
724
+ # box
725
+ xmin = max(0, random.randint(0, w) - mask_w // 2)
726
+ ymin = max(0, random.randint(0, h) - mask_h // 2)
727
+ xmax = min(w, xmin + mask_w)
728
+ ymax = min(h, ymin + mask_h)
729
+
730
+ # apply random color mask
731
+ cv2.imwrite(file, img[ymin:ymax, xmin:xmax])
732
+
733
+
734
+ def coco_single_class_labels(path='../coco/labels/train2014/', label_class=43):
735
+ # Makes single-class coco datasets. from utils.utils import *; coco_single_class_labels()
736
+ if os.path.exists('new/'):
737
+ shutil.rmtree('new/') # delete output folder
738
+ os.makedirs('new/') # make new output folder
739
+ os.makedirs('new/labels/')
740
+ os.makedirs('new/images/')
741
+ for file in tqdm(sorted(glob.glob('%s/*.*' % path))):
742
+ with open(file, 'r') as f:
743
+ labels = np.array([x.split() for x in f.read().splitlines()], dtype=np.float32)
744
+ i = labels[:, 0] == label_class
745
+ if any(i):
746
+ img_file = file.replace('labels', 'images').replace('txt', 'jpg')
747
+ labels[:, 0] = 0 # reset class to 0
748
+ with open('new/images.txt', 'a') as f: # add image to dataset list
749
+ f.write(img_file + '\n')
750
+ with open('new/labels/' + Path(file).name, 'a') as f: # write label
751
+ for l in labels[i]:
752
+ f.write('%g %.6f %.6f %.6f %.6f\n' % tuple(l))
753
+ shutil.copyfile(src=img_file, dst='new/images/' + Path(file).name.replace('txt', 'jpg')) # copy images
754
+
755
+
756
+ def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
757
+ """ Creates kmeans-evolved anchors from training dataset
758
+
759
+ Arguments:
760
+ path: path to dataset *.yaml, or a loaded dataset
761
+ n: number of anchors
762
+ img_size: image size used for training
763
+ thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
764
+ gen: generations to evolve anchors using genetic algorithm
765
+
766
+ Return:
767
+ k: kmeans evolved anchors
768
+
769
+ Usage:
770
+ from utils.utils import *; _ = kmean_anchors()
771
+ """
772
+ if kmeans is None:
773
+ raise ImportError(
774
+ "SciPy is required for kmean_anchors(), but SciPy could not be imported in this environment. "
775
+ f"Original error: {_SCIPY_IMPORT_ERROR}"
776
+ )
777
+ thr = 1. / thr
778
+
779
+ def metric(k, wh): # compute metrics
780
+ r = wh[:, None] / k[None]
781
+ x = torch.min(r, 1. / r).min(2)[0] # ratio metric
782
+ # x = wh_iou(wh, torch.tensor(k)) # iou metric
783
+ return x, x.max(1)[0] # x, best_x
784
+
785
+ def fitness(k): # mutation fitness
786
+ _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
787
+ return (best * (best > thr).float()).mean() # fitness
788
+
789
+ def print_results(k):
790
+ k = k[np.argsort(k.prod(1))] # sort small to large
791
+ x, best = metric(k, wh0)
792
+ bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
793
+ print('thr=%.2f: %.4f best possible recall, %.2f anchors past thr' % (thr, bpr, aat))
794
+ print('n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thr=%.3f-mean: ' %
795
+ (n, img_size, x.mean(), best.mean(), x[x > thr].mean()), end='')
796
+ for i, x in enumerate(k):
797
+ print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
798
+ return k
799
+
800
+ if isinstance(path, str): # *.yaml file
801
+ with open(path) as f:
802
+ data_dict = yaml.load(f, Loader=yaml.FullLoader) # model dict
803
+ from utils.datasets import LoadImagesAndLabels
804
+ dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
805
+ else:
806
+ dataset = path # dataset
807
+
808
+ # Get label wh
809
+ shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
810
+ wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
811
+
812
+ # Filter
813
+ i = (wh0 < 3.0).any(1).sum()
814
+ if i:
815
+ print('WARNING: Extremely small objects found. '
816
+ '%g of %g labels are < 3 pixels in width or height.' % (i, len(wh0)))
817
+ wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
818
+
819
+ # Kmeans calculation
820
+ print('Running kmeans for %g anchors on %g points...' % (n, len(wh)))
821
+ s = wh.std(0) # sigmas for whitening
822
+ k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
823
+ k *= s
824
+ wh = torch.tensor(wh, dtype=torch.float32) # filtered
825
+ wh0 = torch.tensor(wh0, dtype=torch.float32) # unflitered
826
+ k = print_results(k)
827
+
828
+ # Plot
829
+ # k, d = [None] * 20, [None] * 20
830
+ # for i in tqdm(range(1, 21)):
831
+ # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
832
+ # fig, ax = plt.subplots(1, 2, figsize=(14, 7))
833
+ # ax = ax.ravel()
834
+ # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
835
+ # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
836
+ # ax[0].hist(wh[wh[:, 0]<100, 0],400)
837
+ # ax[1].hist(wh[wh[:, 1]<100, 1],400)
838
+ # fig.tight_layout()
839
+ # fig.savefig('wh.png', dpi=200)
840
+
841
+ # Evolve
842
+ npr = np.random
843
+ f, sh, mp, s = fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
844
+ pbar = tqdm(range(gen), desc='Evolving anchors with Genetic Algorithm') # progress bar
845
+ for _ in pbar:
846
+ v = np.ones(sh)
847
+ while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
848
+ v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
849
+ kg = (k.copy() * v).clip(min=2.0)
850
+ fg = fitness(kg)
851
+ if fg > f:
852
+ f, k = fg, kg.copy()
853
+ pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f
854
+ if verbose:
855
+ print_results(k)
856
+
857
+ return print_results(k)
858
+
859
+
860
+ def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
861
+ # Print mutation results to evolve.txt (for use with train.py --evolve)
862
+ a = '%10s' * len(hyp) % tuple(hyp.keys()) # hyperparam keys
863
+ b = '%10.3g' * len(hyp) % tuple(hyp.values()) # hyperparam values
864
+ c = '%10.4g' * len(results) % results # results (P, R, [email protected], [email protected]:0.95, val_losses x 3)
865
+ print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
866
+
867
+ if bucket:
868
+ os.system('gsutil cp gs://%s/evolve.txt .' % bucket) # download evolve.txt
869
+
870
+ with open('evolve.txt', 'a') as f: # append result
871
+ f.write(c + b + '\n')
872
+ x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0) # load unique rows
873
+ x = x[np.argsort(-fitness(x))] # sort
874
+ np.savetxt('evolve.txt', x, '%10.3g') # save sort by fitness
875
+
876
+ if bucket:
877
+ os.system('gsutil cp evolve.txt gs://%s' % bucket) # upload evolve.txt
878
+
879
+ # Save yaml
880
+ for i, k in enumerate(hyp.keys()):
881
+ hyp[k] = float(x[0, i + 7])
882
+ with open(yaml_file, 'w') as f:
883
+ results = tuple(x[0, :7])
884
+ c = '%10.4g' * len(results) % results # results (P, R, [email protected], [email protected]:0.95, val_losses x 3)
885
+ f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
886
+ yaml.dump(hyp, f, sort_keys=False)
887
+
888
+
889
+ def apply_classifier(x, model, img, im0):
890
+ # applies a second stage classifier to yolo outputs
891
+ im0 = [im0] if isinstance(im0, np.ndarray) else im0
892
+ for i, d in enumerate(x): # per image
893
+ if d is not None and len(d):
894
+ d = d.clone()
895
+
896
+ # Reshape and pad cutouts
897
+ b = xyxy2xywh(d[:, :4]) # boxes
898
+ b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
899
+ b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
900
+ d[:, :4] = xywh2xyxy(b).long()
901
+
902
+ # Rescale boxes from img_size to im0 size
903
+ scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
904
+
905
+ # Classes
906
+ pred_cls1 = d[:, 5].long()
907
+ ims = []
908
+ for j, a in enumerate(d): # per item
909
+ cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
910
+ im = cv2.resize(cutout, (224, 224)) # BGR
911
+ # cv2.imwrite('test%i.jpg' % j, cutout)
912
+
913
+ im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
914
+ im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
915
+ im /= 255.0 # 0 - 255 to 0.0 - 1.0
916
+ ims.append(im)
917
+
918
+ pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
919
+ x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
920
+
921
+ return x
922
+
923
+
924
+ def fitness(x):
925
+ # Returns fitness (for use with results.txt or evolve.txt)
926
+ w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, [email protected], [email protected]:0.95]
927
+ return (x[:, :4] * w).sum(1)
928
+
929
+
930
+ def output_to_target(output, width, height):
931
+ # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
932
+ if isinstance(output, torch.Tensor):
933
+ output = output.cpu().numpy()
934
+
935
+ targets = []
936
+ for i, o in enumerate(output):
937
+ if o is not None:
938
+ for pred in o:
939
+ box = pred[:4]
940
+ w = (box[2] - box[0]) / width
941
+ h = (box[3] - box[1]) / height
942
+ x = box[0] / width + w / 2
943
+ y = box[1] / height + h / 2
944
+ conf = pred[4]
945
+ cls = int(pred[5])
946
+
947
+ targets.append([i, cls, x, y, w, h, conf])
948
+
949
+ return np.array(targets)
950
+
951
+
952
+ def increment_dir(dir, comment=''):
953
+ # Increments a directory runs/exp1 --> runs/exp2_comment
954
+ n = 0 # number
955
+ dir = str(Path(dir)) # os-agnostic
956
+ d = sorted(glob.glob(dir + '*')) # directories
957
+ if len(d):
958
+ n = max([int(x[len(dir):x.find('_') if '_' in x else None]) for x in d]) + 1 # increment
959
+ return dir + str(n) + ('_' + comment if comment else '')
960
+
961
+
962
+ # Plotting functions ---------------------------------------------------------------------------------------------------
963
+ def hist2d(x, y, n=100):
964
+ # 2d histogram used in labels.png and evolve.png
965
+ xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
966
+ hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
967
+ xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
968
+ yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
969
+ return np.log(hist[xidx, yidx])
970
+
971
+
972
+ def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
973
+ if butter is None or filtfilt is None:
974
+ raise ImportError(
975
+ "SciPy is required for butter_lowpass_filtfilt(), but SciPy could not be imported in this environment. "
976
+ f"Original error: {_SCIPY_IMPORT_ERROR}"
977
+ )
978
+ # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
979
+ def butter_lowpass(cutoff, fs, order):
980
+ nyq = 0.5 * fs
981
+ normal_cutoff = cutoff / nyq
982
+ b, a = butter(order, normal_cutoff, btype='low', analog=False)
983
+ return b, a
984
+
985
+ b, a = butter_lowpass(cutoff, fs, order=order)
986
+ return filtfilt(b, a, data) # forward-backward filter
987
+
988
+
989
+ def plot_one_box(x, img, color=None, label=None, line_thickness=None):
990
+ # Plots one bounding box on image img
991
+ tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1 # line/font thickness
992
+ color = color or [random.randint(0, 255) for _ in range(3)]
993
+ c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
994
+ cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
995
+ if label:
996
+ tf = max(tl - 1, 1) # font thickness
997
+ t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
998
+ c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
999
+ cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA) # filled
1000
+ cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
1001
+
1002
+
1003
+ def plot_wh_methods(): # from utils.utils import *; plot_wh_methods()
1004
+ # Compares the two methods for width-height anchor multiplication
1005
+ # https://github.com/ultralytics/yolov3/issues/168
1006
+ x = np.arange(-4.0, 4.0, .1)
1007
+ ya = np.exp(x)
1008
+ yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2
1009
+
1010
+ fig = plt.figure(figsize=(6, 3), dpi=150)
1011
+ plt.plot(x, ya, '.-', label='YOLOv3')
1012
+ plt.plot(x, yb ** 2, '.-', label='YOLOv5 ^2')
1013
+ plt.plot(x, yb ** 1.6, '.-', label='YOLOv5 ^1.6')
1014
+ plt.xlim(left=-4, right=4)
1015
+ plt.ylim(bottom=0, top=6)
1016
+ plt.xlabel('input')
1017
+ plt.ylabel('output')
1018
+ plt.grid()
1019
+ plt.legend()
1020
+ fig.tight_layout()
1021
+ fig.savefig('comparison.png', dpi=200)
1022
+
1023
+
1024
+ def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=640, max_subplots=16):
1025
+ tl = 3 # line thickness
1026
+ tf = max(tl - 1, 1) # font thickness
1027
+ if os.path.isfile(fname): # do not overwrite
1028
+ return None
1029
+
1030
+ if isinstance(images, torch.Tensor):
1031
+ images = images.cpu().float().numpy()
1032
+
1033
+ if isinstance(targets, torch.Tensor):
1034
+ targets = targets.cpu().numpy()
1035
+
1036
+ # un-normalise
1037
+ if np.max(images[0]) <= 1:
1038
+ images *= 255
1039
+
1040
+ bs, _, h, w = images.shape # batch size, _, height, width
1041
+ bs = min(bs, max_subplots) # limit plot images
1042
+ ns = np.ceil(bs ** 0.5) # number of subplots (square)
1043
+
1044
+ # Check if we should resize
1045
+ scale_factor = max_size / max(h, w)
1046
+ if scale_factor < 1:
1047
+ h = math.ceil(scale_factor * h)
1048
+ w = math.ceil(scale_factor * w)
1049
+
1050
+ # Empty array for output
1051
+ mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)
1052
+
1053
+ # Fix class - colour map
1054
+ prop_cycle = plt.rcParams['axes.prop_cycle']
1055
+ # https://stackoverflow.com/questions/51350872/python-from-color-name-to-rgb
1056
+ hex2rgb = lambda h: tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
1057
+ color_lut = [hex2rgb(h) for h in prop_cycle.by_key()['color']]
1058
+
1059
+ for i, img in enumerate(images):
1060
+ if i == max_subplots: # if last batch has fewer images than we expect
1061
+ break
1062
+
1063
+ block_x = int(w * (i // ns))
1064
+ block_y = int(h * (i % ns))
1065
+
1066
+ img = img.transpose(1, 2, 0)
1067
+ if scale_factor < 1:
1068
+ img = cv2.resize(img, (w, h))
1069
+
1070
+ mosaic[block_y:block_y + h, block_x:block_x + w, :] = img
1071
+ if len(targets) > 0:
1072
+ image_targets = targets[targets[:, 0] == i]
1073
+ boxes = xywh2xyxy(image_targets[:, 2:6]).T
1074
+ classes = image_targets[:, 1].astype('int')
1075
+ gt = image_targets.shape[1] == 6 # ground truth if no conf column
1076
+ conf = None if gt else image_targets[:, 6] # check for confidence presence (gt vs pred)
1077
+
1078
+ boxes[[0, 2]] *= w
1079
+ boxes[[0, 2]] += block_x
1080
+ boxes[[1, 3]] *= h
1081
+ boxes[[1, 3]] += block_y
1082
+ for j, box in enumerate(boxes.T):
1083
+ cls = int(classes[j])
1084
+ color = color_lut[cls % len(color_lut)]
1085
+ cls = names[cls] if names else cls
1086
+ if gt or conf[j] > 0.3: # 0.3 conf thresh
1087
+ label = '%s' % cls if gt else '%s %.1f' % (cls, conf[j])
1088
+ plot_one_box(box, mosaic, label=label, color=color, line_thickness=tl)
1089
+
1090
+ # Draw image filename labels
1091
+ if paths is not None:
1092
+ label = os.path.basename(paths[i])[:40] # trim to 40 char
1093
+ t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
1094
+ cv2.putText(mosaic, label, (block_x + 5, block_y + t_size[1] + 5), 0, tl / 3, [220, 220, 220], thickness=tf,
1095
+ lineType=cv2.LINE_AA)
1096
+
1097
+ # Image border
1098
+ cv2.rectangle(mosaic, (block_x, block_y), (block_x + w, block_y + h), (255, 255, 255), thickness=3)
1099
+
1100
+ if fname is not None:
1101
+ mosaic = cv2.resize(mosaic, (int(ns * w * 0.5), int(ns * h * 0.5)), interpolation=cv2.INTER_AREA)
1102
+ cv2.imwrite(fname, cv2.cvtColor(mosaic, cv2.COLOR_BGR2RGB))
1103
+
1104
+ return mosaic
1105
+
1106
+
1107
+ def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
1108
+ # Plot LR simulating training for full epochs
1109
+ optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals
1110
+ y = []
1111
+ for _ in range(epochs):
1112
+ scheduler.step()
1113
+ y.append(optimizer.param_groups[0]['lr'])
1114
+ plt.plot(y, '.-', label='LR')
1115
+ plt.xlabel('epoch')
1116
+ plt.ylabel('LR')
1117
+ plt.grid()
1118
+ plt.xlim(0, epochs)
1119
+ plt.ylim(0)
1120
+ plt.tight_layout()
1121
+ plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
1122
+
1123
+
1124
+ def plot_test_txt(): # from utils.utils import *; plot_test()
1125
+ # Plot test.txt histograms
1126
+ x = np.loadtxt('test.txt', dtype=np.float32)
1127
+ box = xyxy2xywh(x[:, :4])
1128
+ cx, cy = box[:, 0], box[:, 1]
1129
+
1130
+ fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
1131
+ ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
1132
+ ax.set_aspect('equal')
1133
+ plt.savefig('hist2d.png', dpi=300)
1134
+
1135
+ fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
1136
+ ax[0].hist(cx, bins=600)
1137
+ ax[1].hist(cy, bins=600)
1138
+ plt.savefig('hist1d.png', dpi=200)
1139
+
1140
+
1141
+ def plot_targets_txt(): # from utils.utils import *; plot_targets_txt()
1142
+ # Plot targets.txt histograms
1143
+ x = np.loadtxt('targets.txt', dtype=np.float32).T
1144
+ s = ['x targets', 'y targets', 'width targets', 'height targets']
1145
+ fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
1146
+ ax = ax.ravel()
1147
+ for i in range(4):
1148
+ ax[i].hist(x[i], bins=100, label='%.3g +/- %.3g' % (x[i].mean(), x[i].std()))
1149
+ ax[i].legend()
1150
+ ax[i].set_title(s[i])
1151
+ plt.savefig('targets.jpg', dpi=200)
1152
+
1153
+
1154
+ def plot_study_txt(f='study.txt', x=None): # from utils.utils import *; plot_study_txt()
1155
+ # Plot study.txt generated by test.py
1156
+ fig, ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)
1157
+ ax = ax.ravel()
1158
+
1159
+ fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
1160
+ for f in ['coco_study/study_coco_yolov5%s.txt' % x for x in ['s', 'm', 'l', 'x']]:
1161
+ y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
1162
+ x = np.arange(y.shape[1]) if x is None else np.array(x)
1163
+ s = ['P', 'R', '[email protected]', '[email protected]:.95', 't_inference (ms/img)', 't_NMS (ms/img)', 't_total (ms/img)']
1164
+ for i in range(7):
1165
+ ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
1166
+ ax[i].set_title(s[i])
1167
+
1168
+ j = y[3].argmax() + 1
1169
+ ax2.plot(y[6, :j], y[3, :j] * 1E2, '.-', linewidth=2, markersize=8,
1170
+ label=Path(f).stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
1171
+
1172
+ ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [33.8, 39.6, 43.0, 47.5, 49.4, 50.7],
1173
+ 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
1174
+
1175
+ ax2.grid()
1176
+ ax2.set_xlim(0, 30)
1177
+ ax2.set_ylim(28, 50)
1178
+ ax2.set_yticks(np.arange(30, 55, 5))
1179
+ ax2.set_xlabel('GPU Speed (ms/img)')
1180
+ ax2.set_ylabel('COCO AP val')
1181
+ ax2.legend(loc='lower right')
1182
+ plt.savefig('study_mAP_latency.png', dpi=300)
1183
+ plt.savefig(f.replace('.txt', '.png'), dpi=200)
1184
+
1185
+
1186
+ def plot_labels(labels, save_dir=''):
1187
+ # plot dataset labels
1188
+ c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes
1189
+ nc = int(c.max() + 1) # number of classes
1190
+
1191
+ fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
1192
+ ax = ax.ravel()
1193
+ ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
1194
+ ax[0].set_xlabel('classes')
1195
+ ax[1].scatter(b[0], b[1], c=hist2d(b[0], b[1], 90), cmap='jet')
1196
+ ax[1].set_xlabel('x')
1197
+ ax[1].set_ylabel('y')
1198
+ ax[2].scatter(b[2], b[3], c=hist2d(b[2], b[3], 90), cmap='jet')
1199
+ ax[2].set_xlabel('width')
1200
+ ax[2].set_ylabel('height')
1201
+ plt.savefig(Path(save_dir) / 'labels.png', dpi=200)
1202
+ plt.close()
1203
+
1204
+
1205
+ def plot_evolution(yaml_file='runs/evolve/hyp_evolved.yaml'): # from utils.utils import *; plot_evolution()
1206
+ # Plot hyperparameter evolution results in evolve.txt
1207
+ with open(yaml_file) as f:
1208
+ hyp = yaml.load(f, Loader=yaml.FullLoader)
1209
+ x = np.loadtxt('evolve.txt', ndmin=2)
1210
+ f = fitness(x)
1211
+ # weights = (f - f.min()) ** 2 # for weighted results
1212
+ plt.figure(figsize=(10, 10), tight_layout=True)
1213
+ matplotlib.rc('font', **{'size': 8})
1214
+ for i, (k, v) in enumerate(hyp.items()):
1215
+ y = x[:, i + 7]
1216
+ # mu = (y * weights).sum() / weights.sum() # best weighted result
1217
+ mu = y[f.argmax()] # best single result
1218
+ plt.subplot(5, 5, i + 1)
1219
+ plt.scatter(y, f, c=hist2d(y, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
1220
+ plt.plot(mu, f.max(), 'k+', markersize=15)
1221
+ plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9}) # limit to 40 characters
1222
+ if i % 5 != 0:
1223
+ plt.yticks([])
1224
+ print('%15s: %.3g' % (k, mu))
1225
+ plt.savefig('evolve.png', dpi=200)
1226
+ print('\nPlot saved as evolve.png')
1227
+
1228
+
1229
+ def plot_results_overlay(start=0, stop=0): # from utils.utils import *; plot_results_overlay()
1230
+ # Plot training 'results*.txt', overlaying train and val losses
1231
+ s = ['train', 'train', 'train', 'Precision', '[email protected]', 'val', 'val', 'val', 'Recall', '[email protected]:0.95'] # legends
1232
+ t = ['GIoU', 'Objectness', 'Classification', 'P-R', 'mAP-F1'] # titles
1233
+ for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
1234
+ results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
1235
+ n = results.shape[1] # number of rows
1236
+ x = range(start, min(stop, n) if stop else n)
1237
+ fig, ax = plt.subplots(1, 5, figsize=(14, 3.5), tight_layout=True)
1238
+ ax = ax.ravel()
1239
+ for i in range(5):
1240
+ for j in [i, i + 5]:
1241
+ y = results[j, x]
1242
+ ax[i].plot(x, y, marker='.', label=s[j])
1243
+ # y_smooth = butter_lowpass_filtfilt(y)
1244
+ # ax[i].plot(x, np.gradient(y_smooth), marker='.', label=s[j])
1245
+
1246
+ ax[i].set_title(t[i])
1247
+ ax[i].legend()
1248
+ ax[i].set_ylabel(f) if i == 0 else None # add filename
1249
+ fig.savefig(f.replace('.txt', '.png'), dpi=200)
1250
+
1251
+
1252
+ def plot_results(start=0, stop=0, bucket='', id=(), labels=(),
1253
+ save_dir=''): # from utils.utils import *; plot_results()
1254
+ # Plot training 'results*.txt' as seen in https://github.com/ultralytics/yolov5#reproduce-our-training
1255
+ fig, ax = plt.subplots(2, 5, figsize=(12, 6))
1256
+ ax = ax.ravel()
1257
+ s = ['GIoU', 'Objectness', 'Classification', 'Precision', 'Recall',
1258
+ 'val GIoU', 'val Objectness', 'val Classification', '[email protected]', '[email protected]:0.95']
1259
+ if bucket:
1260
+ os.system('rm -rf storage.googleapis.com')
1261
+ files = ['https://storage.googleapis.com/%s/results%g.txt' % (bucket, x) for x in id]
1262
+ else:
1263
+ files = glob.glob(str(Path(save_dir) / 'results*.txt')) + glob.glob('../../Downloads/results*.txt')
1264
+ for fi, f in enumerate(files):
1265
+ try:
1266
+ results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
1267
+ n = results.shape[1] # number of rows
1268
+ x = range(start, min(stop, n) if stop else n)
1269
+ for i in range(10):
1270
+ y = results[i, x]
1271
+ if i in [0, 1, 2, 5, 6, 7]:
1272
+ y[y == 0] = np.nan # dont show zero loss values
1273
+ # y /= y[0] # normalize
1274
+ label = labels[fi] if len(labels) else Path(f).stem
1275
+ ax[i].plot(x, y, marker='.', label=label, linewidth=2, markersize=8)
1276
+ ax[i].set_title(s[i])
1277
+ # if i in [5, 6, 7]: # share train and val loss y axes
1278
+ # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
1279
+ except:
1280
+ print('Warning: Plotting error for %s, skipping file' % f)
1281
+
1282
+ fig.tight_layout()
1283
+ ax[1].legend()
1284
+ fig.savefig(Path(save_dir) / 'results.png', dpi=200)
yolov5_anime/utils/google_utils.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file contains google utils: https://cloud.google.com/storage/docs/reference/libraries
2
+ # pip install --upgrade google-cloud-storage
3
+ # from google.cloud import storage
4
+
5
+ import os
6
+ import platform
7
+ import time
8
+ from pathlib import Path
9
+
10
+
11
+ def attempt_download(weights):
12
+ # Attempt to download pretrained weights if not found locally
13
+ weights = weights.strip().replace("'", '')
14
+ msg = weights + ' missing, try downloading from https://drive.google.com/drive/folders/1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J'
15
+
16
+ r = 1 # return
17
+ if len(weights) > 0 and not os.path.isfile(weights):
18
+ d = {'yolov3-spp.pt': '1mM67oNw4fZoIOL1c8M3hHmj66d8e-ni_', # yolov3-spp.yaml
19
+ 'yolov5s.pt': '1R5T6rIyy3lLwgFXNms8whc-387H0tMQO', # yolov5s.yaml
20
+ 'yolov5m.pt': '1vobuEExpWQVpXExsJ2w-Mbf3HJjWkQJr', # yolov5m.yaml
21
+ 'yolov5l.pt': '1hrlqD1Wdei7UT4OgT785BEk1JwnSvNEV', # yolov5l.yaml
22
+ 'yolov5x.pt': '1mM8aZJlWTxOg7BZJvNUMrTnA2AbeCVzS', # yolov5x.yaml
23
+ }
24
+
25
+ file = Path(weights).name
26
+ if file in d:
27
+ r = gdrive_download(id=d[file], name=weights)
28
+
29
+ if not (r == 0 and os.path.exists(weights) and os.path.getsize(weights) > 1E6): # weights exist and > 1MB
30
+ os.remove(weights) if os.path.exists(weights) else None # remove partial downloads
31
+ s = 'curl -L -o %s "storage.googleapis.com/ultralytics/yolov5/ckpt/%s"' % (weights, file)
32
+ r = os.system(s) # execute, capture return values
33
+
34
+ # Error check
35
+ if not (r == 0 and os.path.exists(weights) and os.path.getsize(weights) > 1E6): # weights exist and > 1MB
36
+ os.remove(weights) if os.path.exists(weights) else None # remove partial downloads
37
+ raise Exception(msg)
38
+
39
+
40
+ def gdrive_download(id='1n_oKgR81BJtqk75b00eAjdv03qVCQn2f', name='coco128.zip'):
41
+ # Downloads a file from Google Drive, accepting presented query
42
+ # from utils.google_utils import *; gdrive_download()
43
+ t = time.time()
44
+
45
+ print('Downloading https://drive.google.com/uc?export=download&id=%s as %s... ' % (id, name), end='')
46
+ os.remove(name) if os.path.exists(name) else None # remove existing
47
+ os.remove('cookie') if os.path.exists('cookie') else None
48
+
49
+ # Attempt file download
50
+ out = "NUL" if platform.system() == "Windows" else "/dev/null"
51
+ os.system('curl -c ./cookie -s -L "drive.google.com/uc?export=download&id=%s" > %s ' % (id, out))
52
+ if os.path.exists('cookie'): # large file
53
+ s = 'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm=%s&id=%s" -o %s' % (get_token(), id, name)
54
+ else: # small file
55
+ s = 'curl -s -L -o %s "drive.google.com/uc?export=download&id=%s"' % (name, id)
56
+ r = os.system(s) # execute, capture return values
57
+ os.remove('cookie') if os.path.exists('cookie') else None
58
+
59
+ # Error check
60
+ if r != 0:
61
+ os.remove(name) if os.path.exists(name) else None # remove partial
62
+ print('Download error ') # raise Exception('Download error')
63
+ return r
64
+
65
+ # Unzip if archive
66
+ if name.endswith('.zip'):
67
+ print('unzipping... ', end='')
68
+ os.system('unzip -q %s' % name) # unzip
69
+ os.remove(name) # remove zip to free space
70
+
71
+ print('Done (%.1fs)' % (time.time() - t))
72
+ return r
73
+
74
+
75
+ def get_token(cookie="./cookie"):
76
+ with open(cookie) as f:
77
+ for line in f:
78
+ if "download" in line:
79
+ return line.split()[-1]
80
+ return ""
81
+
82
+ # def upload_blob(bucket_name, source_file_name, destination_blob_name):
83
+ # # Uploads a file to a bucket
84
+ # # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
85
+ #
86
+ # storage_client = storage.Client()
87
+ # bucket = storage_client.get_bucket(bucket_name)
88
+ # blob = bucket.blob(destination_blob_name)
89
+ #
90
+ # blob.upload_from_filename(source_file_name)
91
+ #
92
+ # print('File {} uploaded to {}.'.format(
93
+ # source_file_name,
94
+ # destination_blob_name))
95
+ #
96
+ #
97
+ # def download_blob(bucket_name, source_blob_name, destination_file_name):
98
+ # # Uploads a blob from a bucket
99
+ # storage_client = storage.Client()
100
+ # bucket = storage_client.get_bucket(bucket_name)
101
+ # blob = bucket.blob(source_blob_name)
102
+ #
103
+ # blob.download_to_filename(destination_file_name)
104
+ #
105
+ # print('Blob {} downloaded to {}.'.format(
106
+ # source_blob_name,
107
+ # destination_file_name))
yolov5_anime/utils/torch_utils.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import time
4
+ from copy import deepcopy
5
+
6
+ import torch
7
+ import torch.backends.cudnn as cudnn
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+ import torchvision.models as models
11
+
12
+
13
+ def init_seeds(seed=0):
14
+ torch.manual_seed(seed)
15
+
16
+ # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
17
+ if seed == 0: # slower, more reproducible
18
+ cudnn.deterministic = True
19
+ cudnn.benchmark = False
20
+ else: # faster, less reproducible
21
+ cudnn.deterministic = False
22
+ cudnn.benchmark = True
23
+
24
+
25
+ def select_device(device='', batch_size=None):
26
+ # device = 'cpu' or '0' or '0,1,2,3'
27
+ cpu_request = device.lower() == 'cpu'
28
+ if device and not cpu_request: # if device requested other than 'cpu'
29
+ os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable
30
+ assert torch.cuda.is_available(), 'CUDA unavailable, invalid device %s requested' % device # check availablity
31
+
32
+ cuda = False if cpu_request else torch.cuda.is_available()
33
+ if cuda:
34
+ c = 1024 ** 2 # bytes to MB
35
+ ng = torch.cuda.device_count()
36
+ if ng > 1 and batch_size: # check that batch_size is compatible with device_count
37
+ assert batch_size % ng == 0, 'batch-size %g not multiple of GPU count %g' % (batch_size, ng)
38
+ x = [torch.cuda.get_device_properties(i) for i in range(ng)]
39
+ s = 'Using CUDA '
40
+ for i in range(0, ng):
41
+ if i == 1:
42
+ s = ' ' * len(s)
43
+ print("%sdevice%g _CudaDeviceProperties(name='%s', total_memory=%dMB)" %
44
+ (s, i, x[i].name, x[i].total_memory / c))
45
+ else:
46
+ print('Using CPU')
47
+
48
+ print('') # skip a line
49
+ return torch.device('cuda:0' if cuda else 'cpu')
50
+
51
+
52
+ def time_synchronized():
53
+ torch.cuda.synchronize() if torch.cuda.is_available() else None
54
+ return time.time()
55
+
56
+
57
+ def is_parallel(model):
58
+ return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
59
+
60
+
61
+ def intersect_dicts(da, db, exclude=()):
62
+ # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
63
+ return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
64
+
65
+
66
+ def initialize_weights(model):
67
+ for m in model.modules():
68
+ t = type(m)
69
+ if t is nn.Conv2d:
70
+ pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
71
+ elif t is nn.BatchNorm2d:
72
+ m.eps = 1e-3
73
+ m.momentum = 0.03
74
+ elif t in [nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
75
+ m.inplace = True
76
+
77
+
78
+ def find_modules(model, mclass=nn.Conv2d):
79
+ # Finds layer indices matching module class 'mclass'
80
+ return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
81
+
82
+
83
+ def sparsity(model):
84
+ # Return global model sparsity
85
+ a, b = 0., 0.
86
+ for p in model.parameters():
87
+ a += p.numel()
88
+ b += (p == 0).sum()
89
+ return b / a
90
+
91
+
92
+ def prune(model, amount=0.3):
93
+ # Prune model to requested global sparsity
94
+ import torch.nn.utils.prune as prune
95
+ print('Pruning model... ', end='')
96
+ for name, m in model.named_modules():
97
+ if isinstance(m, nn.Conv2d):
98
+ prune.l1_unstructured(m, name='weight', amount=amount) # prune
99
+ prune.remove(m, 'weight') # make permanent
100
+ print(' %.3g global sparsity' % sparsity(model))
101
+
102
+
103
+ def fuse_conv_and_bn(conv, bn):
104
+ # https://tehnokv.com/posts/fusing-batchnorm-and-conv/
105
+ with torch.no_grad():
106
+ # init
107
+ fusedconv = nn.Conv2d(conv.in_channels,
108
+ conv.out_channels,
109
+ kernel_size=conv.kernel_size,
110
+ stride=conv.stride,
111
+ padding=conv.padding,
112
+ bias=True).to(conv.weight.device)
113
+
114
+ # prepare filters
115
+ w_conv = conv.weight.clone().view(conv.out_channels, -1)
116
+ w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
117
+ fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.size()))
118
+
119
+ # prepare spatial bias
120
+ b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
121
+ b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
122
+ fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
123
+
124
+ return fusedconv
125
+
126
+
127
+ def model_info(model, verbose=False):
128
+ # Plots a line-by-line description of a PyTorch model
129
+ n_p = sum(x.numel() for x in model.parameters()) # number parameters
130
+ n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
131
+ if verbose:
132
+ print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
133
+ for i, (name, p) in enumerate(model.named_parameters()):
134
+ name = name.replace('module_list.', '')
135
+ print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
136
+ (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
137
+
138
+ try: # FLOPS
139
+ from thop import profile
140
+ flops = profile(deepcopy(model), inputs=(torch.zeros(1, 3, 64, 64),), verbose=False)[0] / 1E9 * 2
141
+ fs = ', %.1f GFLOPS' % (flops * 100) # 640x640 FLOPS
142
+ except:
143
+ fs = ''
144
+
145
+ print('Model Summary: %g layers, %g parameters, %g gradients%s' % (len(list(model.parameters())), n_p, n_g, fs))
146
+
147
+
148
+ def load_classifier(name='resnet101', n=2):
149
+ # Loads a pretrained model reshaped to n-class output
150
+ model = models.__dict__[name](pretrained=True)
151
+
152
+ # Display model properties
153
+ input_size = [3, 224, 224]
154
+ input_space = 'RGB'
155
+ input_range = [0, 1]
156
+ mean = [0.485, 0.456, 0.406]
157
+ std = [0.229, 0.224, 0.225]
158
+ for x in [input_size, input_space, input_range, mean, std]:
159
+ print(x + ' =', eval(x))
160
+
161
+ # Reshape output to n classes
162
+ filters = model.fc.weight.shape[1]
163
+ model.fc.bias = nn.Parameter(torch.zeros(n), requires_grad=True)
164
+ model.fc.weight = nn.Parameter(torch.zeros(n, filters), requires_grad=True)
165
+ model.fc.out_features = n
166
+ return model
167
+
168
+
169
+ def scale_img(img, ratio=1.0, same_shape=False): # img(16,3,256,416), r=ratio
170
+ # scales img(bs,3,y,x) by ratio
171
+ if ratio == 1.0:
172
+ return img
173
+ else:
174
+ h, w = img.shape[2:]
175
+ s = (int(h * ratio), int(w * ratio)) # new size
176
+ img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize
177
+ if not same_shape: # pad/crop img
178
+ gs = 32 # (pixels) grid size
179
+ h, w = [math.ceil(x * ratio / gs) * gs for x in (h, w)]
180
+ return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean
181
+
182
+
183
+ def copy_attr(a, b, include=(), exclude=()):
184
+ # Copy attributes from b to a, options to only include [...] and to exclude [...]
185
+ for k, v in b.__dict__.items():
186
+ if (len(include) and k not in include) or k.startswith('_') or k in exclude:
187
+ continue
188
+ else:
189
+ setattr(a, k, v)
190
+
191
+
192
+ class ModelEMA:
193
+ """ Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
194
+ Keep a moving average of everything in the model state_dict (parameters and buffers).
195
+ This is intended to allow functionality like
196
+ https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
197
+ A smoothed version of the weights is necessary for some training schemes to perform well.
198
+ This class is sensitive where it is initialized in the sequence of model init,
199
+ GPU assignment and distributed training wrappers.
200
+ """
201
+
202
+ def __init__(self, model, decay=0.9999, updates=0):
203
+ # Create EMA
204
+ self.ema = deepcopy(model.module if is_parallel(model) else model).eval() # FP32 EMA
205
+ # if next(model.parameters()).device.type != 'cpu':
206
+ # self.ema.half() # FP16 EMA
207
+ self.updates = updates # number of EMA updates
208
+ self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs)
209
+ for p in self.ema.parameters():
210
+ p.requires_grad_(False)
211
+
212
+ def update(self, model):
213
+ # Update EMA parameters
214
+ with torch.no_grad():
215
+ self.updates += 1
216
+ d = self.decay(self.updates)
217
+
218
+ msd = model.module.state_dict() if is_parallel(model) else model.state_dict() # model state_dict
219
+ for k, v in self.ema.state_dict().items():
220
+ if v.dtype.is_floating_point:
221
+ v *= d
222
+ v += (1. - d) * msd[k].detach()
223
+
224
+ def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
225
+ # Update EMA attributes
226
+ copy_attr(self.ema, model, include, exclude)