File size: 24,797 Bytes
e5d943e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
/**

 * 🌿 Ivy's GPU Art Studio

 * Tab 2: Fluid Simulation

 *

 * GPU-accelerated fluid dynamics using compute shaders

 * Based on Jos Stam's "Stable Fluids" algorithm

 * Enhanced with styles, palettes, and effects!

 */

class FluidRenderer {
    constructor() {
        this.device = null;
        this.context = null;
        this.format = null;

        // Simulation parameters
        this.params = {
            style: 0, // 0=classic, 1=ivy, 2=ink, 3=smoke, 4=plasma, 5=watercolor
            palette: 0, // 0=ivy, 1=rainbow, 2=fire, 3=ocean, 4=neon, 5=sunset, 6=cosmic, 7=mono
            viscosity: 0.1,
            diffusion: 0.0001,
            force: 100,
            curl: 30,
            pressure: 0.8,
            bloom: true,
            vortex: false
        };

        // Simulation state
        this.gridSize = 256;
        this.velocityBuffers = [];
        this.densityBuffers = [];
        this.currentBuffer = 0;

        this.input = null;
        this.animationLoop = null;
        this.isActive = false;
        this.time = 0;

        // Previous mouse position for velocity
        this.prevMouseX = 0.5;
        this.prevMouseY = 0.5;
    }

    async init(device, context, format, canvas) {
        this.device = device;
        this.context = context;
        this.format = format;
        this.canvas = canvas;

        // Create simulation buffers
        this.createBuffers();

        // Create pipelines
        await this.createPipelines();

        // Setup input
        this.input = new WebGPUUtils.InputHandler(canvas);

        // Animation loop
        this.animationLoop = new WebGPUUtils.AnimationLoop((dt, totalTime) => {
            this.time = totalTime;
            this.simulate(dt);
            this.render();
        });
    }

    createBuffers() {
        const size = this.gridSize * this.gridSize;

        // Double buffering for velocity (vec2) and density (f32)
        for (let i = 0; i < 2; i++) {
            this.velocityBuffers.push(
                this.device.createBuffer({
                    label: `Velocity Buffer ${i}`,
                    size: size * 8, // vec2f = 8 bytes
                    usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_DST
                })
            );

            this.densityBuffers.push(
                this.device.createBuffer({
                    label: `Density Buffer ${i}`,
                    size: size * 16, // vec4f for RGBA = 16 bytes
                    usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_DST
                })
            );
        }

        // Uniform buffer
        this.uniformBuffer = this.device.createBuffer({
            label: "Fluid Uniforms",
            size: 64,
            usage: GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_DST
        });

        // Initialize with zeros
        const zeroVelocity = new Float32Array(size * 2);
        const zeroDensity = new Float32Array(size * 4);

        for (let i = 0; i < 2; i++) {
            this.device.queue.writeBuffer(this.velocityBuffers[i], 0, zeroVelocity);
            this.device.queue.writeBuffer(this.densityBuffers[i], 0, zeroDensity);
        }
    }

    async createPipelines() {
        // Compute shader for simulation
        const computeShader = this.device.createShaderModule({
            label: "Fluid Compute Shader",
            code: this.getComputeShaderCode()
        });

        // Render shader for display
        const renderShader = this.device.createShaderModule({
            label: "Fluid Render Shader",
            code: this.getRenderShaderCode()
        });

        // Bind group layouts
        this.computeBindGroupLayout = this.device.createBindGroupLayout({
            entries: [
                { binding: 0, visibility: GPUShaderStage.COMPUTE, buffer: { type: "uniform" } },
                { binding: 1, visibility: GPUShaderStage.COMPUTE, buffer: { type: "read-only-storage" } },
                { binding: 2, visibility: GPUShaderStage.COMPUTE, buffer: { type: "storage" } },
                { binding: 3, visibility: GPUShaderStage.COMPUTE, buffer: { type: "read-only-storage" } },
                { binding: 4, visibility: GPUShaderStage.COMPUTE, buffer: { type: "storage" } }
            ]
        });

        this.renderBindGroupLayout = this.device.createBindGroupLayout({
            entries: [
                { binding: 0, visibility: GPUShaderStage.FRAGMENT, buffer: { type: "uniform" } },
                { binding: 1, visibility: GPUShaderStage.FRAGMENT, buffer: { type: "read-only-storage" } },
                { binding: 2, visibility: GPUShaderStage.FRAGMENT, buffer: { type: "read-only-storage" } }
            ]
        });

        // Compute pipeline
        this.computePipeline = this.device.createComputePipeline({
            label: "Fluid Compute Pipeline",
            layout: this.device.createPipelineLayout({
                bindGroupLayouts: [this.computeBindGroupLayout]
            }),
            compute: {
                module: computeShader,
                entryPoint: "main"
            }
        });

        // Render pipeline
        this.renderPipeline = this.device.createRenderPipeline({
            label: "Fluid Render Pipeline",
            layout: this.device.createPipelineLayout({
                bindGroupLayouts: [this.renderBindGroupLayout]
            }),
            vertex: {
                module: renderShader,
                entryPoint: "vertexMain"
            },
            fragment: {
                module: renderShader,
                entryPoint: "fragmentMain",
                targets: [{ format: this.format }]
            },
            primitive: {
                topology: "triangle-list"
            }
        });

        // Create bind groups
        this.updateBindGroups();
    }

    updateBindGroups() {
        const curr = this.currentBuffer;
        const next = 1 - curr;

        this.computeBindGroup = this.device.createBindGroup({
            layout: this.computeBindGroupLayout,
            entries: [
                { binding: 0, resource: { buffer: this.uniformBuffer } },
                { binding: 1, resource: { buffer: this.velocityBuffers[curr] } },
                { binding: 2, resource: { buffer: this.velocityBuffers[next] } },
                { binding: 3, resource: { buffer: this.densityBuffers[curr] } },
                { binding: 4, resource: { buffer: this.densityBuffers[next] } }
            ]
        });

        this.renderBindGroup = this.device.createBindGroup({
            layout: this.renderBindGroupLayout,
            entries: [
                { binding: 0, resource: { buffer: this.uniformBuffer } },
                { binding: 1, resource: { buffer: this.velocityBuffers[next] } },
                { binding: 2, resource: { buffer: this.densityBuffers[next] } }
            ]
        });
    }

    start() {
        this.isActive = true;
        console.log("🌊 FluidRenderer started!");
        this.animationLoop.start();
    }

    stop() {
        this.isActive = false;
        console.log("🌊 FluidRenderer stopped");
        this.animationLoop.stop();
    }

    reset() {
        const size = this.gridSize * this.gridSize;
        const zeroVelocity = new Float32Array(size * 2);
        const zeroDensity = new Float32Array(size * 4);

        for (let i = 0; i < 2; i++) {
            this.device.queue.writeBuffer(this.velocityBuffers[i], 0, zeroVelocity);
            this.device.queue.writeBuffer(this.densityBuffers[i], 0, zeroDensity);
        }
    }

    setViscosity(value) {
        this.params.viscosity = value;
    }

    setDiffusion(value) {
        this.params.diffusion = value;
    }

    setForce(value) {
        this.params.force = value;
    }

    setColorMode(mode) {
        const modes = { ink: 0, fire: 1, rainbow: 2, smoke: 3, ivy: 4 };
        this.params.colorMode = modes[mode] || 0;
    }

    setStyle(style) {
        const styles = { classic: 0, ivy: 1, ink: 2, smoke: 3, plasma: 4, watercolor: 5 };
        this.params.style = styles[style] ?? 0;
    }

    setPalette(palette) {
        const palettes = { ivy: 0, rainbow: 1, fire: 2, ocean: 3, neon: 4, sunset: 5, cosmic: 6, monochrome: 7 };
        this.params.palette = palettes[palette] ?? 0;
    }

    setCurl(value) {
        this.params.curl = value;
    }

    setPressure(value) {
        this.params.pressure = value;
    }

    setBloom(enabled) {
        this.params.bloom = enabled;
    }

    setVortex(enabled) {
        this.params.vortex = enabled;
    }

    simulate(dt) {
        if (!this.isActive) return;

        // Auto-spawn some fluid for visual feedback even without mouse
        const autoSpawn = !this.input.isPressed;
        let mouseX = this.input.mouseX;
        let mouseY = this.input.mouseY;
        let isPressed = this.input.isPressed;

        // Auto animation when not interacting
        if (autoSpawn && this.time > 0) {
            // Create swirling patterns automatically
            const t = this.time * 0.5;
            mouseX = 0.5 + 0.3 * Math.sin(t);
            mouseY = 0.5 + 0.3 * Math.cos(t * 0.7);
            isPressed = true; // Simulate mouse press for auto-spawn
        }

        // Calculate mouse velocity
        const dx = (mouseX - this.prevMouseX) * this.params.force;
        const dy = (mouseY - this.prevMouseY) * this.params.force;
        this.prevMouseX = mouseX;
        this.prevMouseY = mouseY;

        // Update uniforms - expanded for new params
        const uniforms = new Float32Array([
            this.gridSize, // 0: grid size
            dt, // 1: delta time
            this.params.viscosity, // 2: viscosity
            this.params.diffusion, // 3: diffusion
            mouseX, // 4: mouse X
            mouseY, // 5: mouse Y
            dx, // 6: velocity X
            dy, // 7: velocity Y
            isPressed ? 1.0 : 0.0, // 8: is mouse pressed
            this.params.style, // 9: style
            this.params.palette, // 10: palette
            this.params.curl, // 11: curl/vorticity
            this.params.pressure, // 12: pressure
            this.params.bloom ? 1.0 : 0.0, // 13: bloom
            this.params.vortex ? 1.0 : 0.0, // 14: vortex
            this.time // 15: time
        ]);

        this.device.queue.writeBuffer(this.uniformBuffer, 0, uniforms);

        // Update bind groups with current buffer state
        this.updateBindGroups();

        // Run compute shader
        const commandEncoder = this.device.createCommandEncoder();
        const computePass = commandEncoder.beginComputePass();

        computePass.setPipeline(this.computePipeline);
        computePass.setBindGroup(0, this.computeBindGroup);
        computePass.dispatchWorkgroups(Math.ceil(this.gridSize / 8), Math.ceil(this.gridSize / 8));

        computePass.end();
        this.device.queue.submit([commandEncoder.finish()]);

        // Swap buffers
        this.currentBuffer = 1 - this.currentBuffer;
    }

    render() {
        if (!this.isActive) return;

        WebGPUUtils.resizeCanvasToDisplaySize(this.canvas, window.devicePixelRatio);

        // IMPORTANT: Create render bind group to read the LATEST buffer (after compute)
        const curr = this.currentBuffer;
        const renderBindGroup = this.device.createBindGroup({
            layout: this.renderBindGroupLayout,
            entries: [
                { binding: 0, resource: { buffer: this.uniformBuffer } },
                { binding: 1, resource: { buffer: this.velocityBuffers[curr] } },
                { binding: 2, resource: { buffer: this.densityBuffers[curr] } }
            ]
        });

        const commandEncoder = this.device.createCommandEncoder();
        const renderPass = commandEncoder.beginRenderPass({
            colorAttachments: [
                {
                    view: this.context.getCurrentTexture().createView(),
                    clearValue: { r: 0, g: 0, b: 0, a: 1 },
                    loadOp: "clear",
                    storeOp: "store"
                }
            ]
        });

        renderPass.setPipeline(this.renderPipeline);
        renderPass.setBindGroup(0, renderBindGroup);
        renderPass.draw(3);
        renderPass.end();

        this.device.queue.submit([commandEncoder.finish()]);
    }

    getComputeShaderCode() {
        return /* wgsl */ `

            struct Uniforms {

                gridSize: f32,

                dt: f32,

                viscosity: f32,

                diffusion: f32,

                mouseX: f32,

                mouseY: f32,

                velX: f32,

                velY: f32,

                mousePressed: f32,

                style: f32,

                palette: f32,

                curl: f32,

                pressure: f32,

                doBloom: f32,

                doVortex: f32,

                time: f32,

            }



            @group(0) @binding(0) var<uniform> u: Uniforms;

            @group(0) @binding(1) var<storage, read> velIn: array<vec2f>;

            @group(0) @binding(2) var<storage, read_write> velOut: array<vec2f>;

            @group(0) @binding(3) var<storage, read> densIn: array<vec4f>;

            @group(0) @binding(4) var<storage, read_write> densOut: array<vec4f>;



            fn idx(x: i32, y: i32) -> u32 {

                let size = i32(u.gridSize);

                let cx = clamp(x, 0, size - 1);

                let cy = clamp(y, 0, size - 1);

                return u32(cy * size + cx);

            }



            fn getPaletteColor(t: f32, paletteId: i32) -> vec3f {

                let tt = fract(t);



                if (paletteId == 0) { // Ivy Green

                    return vec3f(0.13 * tt + 0.05, 0.77 * tt + 0.2, 0.37 * tt + 0.1);

                } else if (paletteId == 1) { // Rainbow

                    return vec3f(

                        0.5 + 0.5 * sin(tt * 6.28 + 0.0),

                        0.5 + 0.5 * sin(tt * 6.28 + 2.094),

                        0.5 + 0.5 * sin(tt * 6.28 + 4.188)

                    );

                } else if (paletteId == 2) { // Fire

                    return vec3f(tt, tt * 0.4, tt * 0.1);

                } else if (paletteId == 3) { // Ocean

                    return vec3f(0.1 * tt, 0.4 * tt + 0.1, 0.9 * tt + 0.1);

                } else if (paletteId == 4) { // Neon

                    return vec3f(

                        0.5 + 0.5 * sin(tt * 12.0),

                        0.5 + 0.5 * sin(tt * 12.0 + 2.0),

                        0.5 + 0.5 * sin(tt * 12.0 + 4.0)

                    );

                } else if (paletteId == 5) { // Sunset

                    return vec3f(0.9 * tt + 0.1, 0.4 * tt, 0.3 * tt + 0.1);

                } else if (paletteId == 6) { // Cosmic

                    return vec3f(0.3 * tt + 0.1, 0.1 * tt + 0.05, 0.8 * tt + 0.2);

                } else { // Monochrome

                    return vec3f(tt * 0.9 + 0.1);

                }

            }



            @compute @workgroup_size(8, 8)

            fn main(@builtin(global_invocation_id) gid: vec3u) {

                let size = i32(u.gridSize);

                let x = i32(gid.x);

                let y = i32(gid.y);



                if (x >= size || y >= size) {

                    return;

                }



                let i = idx(x, y);

                let paletteId = i32(u.palette);



                // Read previous state

                var newVel = velIn[i];

                var newDens = densIn[i];



                // Get neighbors for diffusion

                let vL = velIn[idx(x - 1, y)];

                let vR = velIn[idx(x + 1, y)];

                let vU = velIn[idx(x, y + 1)];

                let vD = velIn[idx(x, y - 1)];



                let dL = densIn[idx(x - 1, y)];

                let dR = densIn[idx(x + 1, y)];

                let dU = densIn[idx(x, y + 1)];

                let dD = densIn[idx(x, y - 1)];



                // Apply diffusion (controlled by diffusion parameter)

                let diffAmount = u.diffusion * 1000.0;

                newVel = mix(newVel, (vL + vR + vU + vD) * 0.25, diffAmount);

                newDens = mix(newDens, (dL + dR + dU + dD) * 0.25, diffAmount);



                // Apply viscosity (dampens velocity)

                newVel *= (1.0 - u.viscosity * 0.1);



                // Vorticity / curl effect

                if (u.doVortex > 0.5) {

                    let curlAmount = u.curl * 0.0005;

                    let vortex = (vR.y - vL.y) - (vU.x - vD.x);

                    newVel += vec2f(-vortex, vortex) * curlAmount;

                }



                // Add forces from mouse

                let fx = f32(x) / f32(size);

                let fy = f32(y) / f32(size);

                let dist = distance(vec2f(fx, fy), vec2f(u.mouseX, u.mouseY));

                let radius = 0.02 + (u.pressure * 0.1); // Pressure affects brush size



                if (dist < radius && u.mousePressed > 0.5) {

                    let strength = 1.0 - dist / radius;

                    // Force affects velocity strength

                    let forceMultiplier = u.velX * u.velX + u.velY * u.velY;

                    newVel += vec2f(u.velX, u.velY) * strength * u.dt * 2.0;



                    // Add density/color using palette

                    let colorHue = strength + u.time * 0.1;

                    let color = getPaletteColor(colorHue, paletteId);

                    newDens += vec4f(color * strength * 3.0, strength * 3.0);

                }



                // Apply pressure (affects how much velocity is preserved)

                newVel *= u.pressure;



                // Decay

                newVel *= 0.995;

                newDens *= 0.992;



                // Boundary conditions

                if (x <= 1 || x >= size - 2 || y <= 1 || y >= size - 2) {

                    newVel *= 0.5;

                }



                velOut[i] = newVel;

                densOut[i] = newDens;

            }

        `;
    }

    getRenderShaderCode() {
        return /* wgsl */ `

            struct Uniforms {

                gridSize: f32,

                dt: f32,

                viscosity: f32,

                diffusion: f32,

                mouseX: f32,

                mouseY: f32,

                velX: f32,

                velY: f32,

                mousePressed: f32,

                style: f32,

                palette: f32,

                curl: f32,

                pressure: f32,

                doBloom: f32,

                doVortex: f32,

                time: f32,

            }



            @group(0) @binding(0) var<uniform> u: Uniforms;

            @group(0) @binding(1) var<storage, read> velocity: array<vec2f>;

            @group(0) @binding(2) var<storage, read> density: array<vec4f>;



            struct VertexOutput {

                @builtin(position) position: vec4f,

                @location(0) uv: vec2f,

            }



            @vertex

            fn vertexMain(@builtin(vertex_index) vertexIndex: u32) -> VertexOutput {

                var pos = array<vec2f, 3>(

                    vec2f(-1.0, -1.0),

                    vec2f(3.0, -1.0),

                    vec2f(-1.0, 3.0)

                );



                var output: VertexOutput;

                output.position = vec4f(pos[vertexIndex], 0.0, 1.0);

                output.uv = pos[vertexIndex] * 0.5 + 0.5;

                return output;

            }



            fn getPaletteColor(t: f32, paletteId: i32) -> vec3f {

                let tt = fract(t);



                if (paletteId == 0) { // Ivy Green

                    return vec3f(0.1 + 0.2 * tt, 0.5 + 0.5 * tt, 0.2 + 0.3 * tt);

                } else if (paletteId == 1) { // Rainbow

                    return vec3f(

                        0.5 + 0.5 * cos(6.28318 * (tt + 0.0)),

                        0.5 + 0.5 * cos(6.28318 * (tt + 0.33)),

                        0.5 + 0.5 * cos(6.28318 * (tt + 0.67))

                    );

                } else if (paletteId == 2) { // Fire

                    return vec3f(min(1.0, tt * 2.5), tt * tt, tt * tt * tt * 0.3);

                } else if (paletteId == 3) { // Ocean

                    return vec3f(0.0 + 0.2 * tt, 0.3 + 0.4 * tt, 0.6 + 0.4 * tt);

                } else if (paletteId == 4) { // Neon

                    return vec3f(

                        0.5 + 0.5 * sin(tt * 12.56),

                        0.5 + 0.5 * sin(tt * 12.56 + 2.094),

                        0.5 + 0.5 * sin(tt * 12.56 + 4.188)

                    );

                } else if (paletteId == 5) { // Sunset

                    return vec3f(0.9 - 0.2 * tt, 0.3 + 0.4 * tt, 0.3 + 0.5 * tt);

                } else if (paletteId == 6) { // Cosmic

                    return vec3f(

                        0.2 + 0.5 * sin(tt * 6.28),

                        0.1 + 0.3 * sin(tt * 6.28 + 2.0),

                        0.5 + 0.5 * sin(tt * 6.28 + 4.0)

                    );

                } else { // Monochrome

                    return vec3f(tt, tt, tt);

                }

            }



            @fragment

            fn fragmentMain(input: VertexOutput) -> @location(0) vec4f {

                let size = i32(u.gridSize);

                let x = i32(input.uv.x * f32(size));

                let y = i32(input.uv.y * f32(size));

                let i = u32(clamp(y, 0, size - 1) * size + clamp(x, 0, size - 1));



                let d = density[i];

                let v = velocity[i];



                let style = i32(u.style);

                let paletteId = i32(u.palette);

                let speed = length(v);

                let dens = length(d.rgb);



                var color = vec3f(0.0);



                // Show mouse position as a dot for visual feedback

                let mouseDist = distance(input.uv, vec2f(u.mouseX, u.mouseY));

                let mouseGlow = smoothstep(0.08, 0.0, mouseDist) * 0.5;



                // Style-based rendering

                if (style == 0) { // Classic - use density color directly

                    color = d.rgb;

                } else if (style == 1) { // Ivy Flow - organic green tones

                    let hue = dens * 0.3 + speed * 0.1;

                    color = getPaletteColor(hue, paletteId);

                    color *= dens * 1.5;

                } else if (style == 2) { // Ink Drop - high contrast

                    color = getPaletteColor(dens + speed * 0.2, paletteId);

                    color = pow(color * dens, vec3f(0.8));

                } else if (style == 3) { // Smoke - soft gradient

                    let smoke = smoothstep(0.0, 1.0, dens);

                    color = mix(vec3f(0.02), getPaletteColor(speed * 0.5, paletteId), smoke);

                } else if (style == 4) { // Plasma - vibrant swirls

                    let plasma = sin(dens * 10.0 + u.time) * 0.5 + 0.5;

                    color = getPaletteColor(plasma + speed * 0.3, paletteId);

                    color *= dens * 2.0;

                } else { // Watercolor - soft bleeding edges

                    let wc = smoothstep(0.0, 0.5, dens);

                    color = getPaletteColor(dens * 0.5 + u.time * 0.05, paletteId) * wc;

                    color = mix(color, vec3f(1.0), (1.0 - wc) * 0.1);

                }



                // Velocity-based highlights

                color += getPaletteColor(0.8, paletteId) * speed * 0.15;



                // Add mouse indicator

                color += getPaletteColor(u.time * 0.2, paletteId) * mouseGlow;



                // Vortex visualization

                if (u.doVortex > 0.5) {

                    // Approximate curl from velocity

                    let curlVis = abs(v.x - v.y) * 0.5;

                    color += vec3f(curlVis * 0.3, curlVis * 0.1, curlVis * 0.4);

                }



                // Bloom effect

                if (u.doBloom > 0.5) {

                    let bloom = max(0.0, dens - 0.5) * 2.0;

                    color += color * bloom * 0.5;

                    color = color / (1.0 + color * 0.3); // Tone mapping

                }



                return vec4f(color, 1.0);

            }

        `;
    }
}

// Export
window.FluidRenderer = FluidRenderer;