Spaces:
Build error
Build error
Upload 11 files
Browse files- LICENSE.txt +201 -0
- kokoro/__init__.py +23 -0
- kokoro/__main__.py +148 -0
- kokoro/custom_stft.py +197 -0
- kokoro/istftnet.py +421 -0
- kokoro/model.py +155 -0
- kokoro/modules.py +183 -0
- kokoro/pipeline.py +445 -0
- requirements.txt +21 -0
- tools/convert_img_to_video.py +152 -0
- tools/i2v_config.yaml +17 -0
LICENSE.txt
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Apache License
|
| 2 |
+
Version 2.0, January 2004
|
| 3 |
+
http://www.apache.org/licenses/
|
| 4 |
+
|
| 5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
| 6 |
+
|
| 7 |
+
1. Definitions.
|
| 8 |
+
|
| 9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
| 10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
| 11 |
+
|
| 12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
| 13 |
+
the copyright owner that is granting the License.
|
| 14 |
+
|
| 15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
| 16 |
+
other entities that control, are controlled by, or are under common
|
| 17 |
+
control with that entity. For the purposes of this definition,
|
| 18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
| 19 |
+
direction or management of such entity, whether by contract or
|
| 20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
| 21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
| 22 |
+
|
| 23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
| 24 |
+
exercising permissions granted by this License.
|
| 25 |
+
|
| 26 |
+
"Source" form shall mean the preferred form for making modifications,
|
| 27 |
+
including but not limited to software source code, documentation
|
| 28 |
+
source, and configuration files.
|
| 29 |
+
|
| 30 |
+
"Object" form shall mean any form resulting from mechanical
|
| 31 |
+
transformation or translation of a Source form, including but
|
| 32 |
+
not limited to compiled object code, generated documentation,
|
| 33 |
+
and conversions to other media types.
|
| 34 |
+
|
| 35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
| 36 |
+
Object form, made available under the License, as indicated by a
|
| 37 |
+
copyright notice that is included in or attached to the work
|
| 38 |
+
(an example is provided in the Appendix below).
|
| 39 |
+
|
| 40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
| 41 |
+
form, that is based on (or derived from) the Work and for which the
|
| 42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
| 43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
| 44 |
+
of this License, Derivative Works shall not include works that remain
|
| 45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
| 46 |
+
the Work and Derivative Works thereof.
|
| 47 |
+
|
| 48 |
+
"Contribution" shall mean any work of authorship, including
|
| 49 |
+
the original version of the Work and any modifications or additions
|
| 50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
| 51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
| 52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
| 53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
| 54 |
+
means any form of electronic, verbal, or written communication sent
|
| 55 |
+
to the Licensor or its representatives, including but not limited to
|
| 56 |
+
communication on electronic mailing lists, source code control systems,
|
| 57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
| 58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
| 59 |
+
excluding communication that is conspicuously marked or otherwise
|
| 60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
| 61 |
+
|
| 62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
| 63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
| 64 |
+
subsequently incorporated within the Work.
|
| 65 |
+
|
| 66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
| 67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
| 70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
| 71 |
+
Work and such Derivative Works in Source or Object form.
|
| 72 |
+
|
| 73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
| 74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 76 |
+
(except as stated in this section) patent license to make, have made,
|
| 77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
| 78 |
+
where such license applies only to those patent claims licensable
|
| 79 |
+
by such Contributor that are necessarily infringed by their
|
| 80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
| 81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
| 82 |
+
institute patent litigation against any entity (including a
|
| 83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
| 84 |
+
or a Contribution incorporated within the Work constitutes direct
|
| 85 |
+
or contributory patent infringement, then any patent licenses
|
| 86 |
+
granted to You under this License for that Work shall terminate
|
| 87 |
+
as of the date such litigation is filed.
|
| 88 |
+
|
| 89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
| 90 |
+
Work or Derivative Works thereof in any medium, with or without
|
| 91 |
+
modifications, and in Source or Object form, provided that You
|
| 92 |
+
meet the following conditions:
|
| 93 |
+
|
| 94 |
+
(a) You must give any other recipients of the Work or
|
| 95 |
+
Derivative Works a copy of this License; and
|
| 96 |
+
|
| 97 |
+
(b) You must cause any modified files to carry prominent notices
|
| 98 |
+
stating that You changed the files; and
|
| 99 |
+
|
| 100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
| 101 |
+
that You distribute, all copyright, patent, trademark, and
|
| 102 |
+
attribution notices from the Source form of the Work,
|
| 103 |
+
excluding those notices that do not pertain to any part of
|
| 104 |
+
the Derivative Works; and
|
| 105 |
+
|
| 106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
| 107 |
+
distribution, then any Derivative Works that You distribute must
|
| 108 |
+
include a readable copy of the attribution notices contained
|
| 109 |
+
within such NOTICE file, excluding those notices that do not
|
| 110 |
+
pertain to any part of the Derivative Works, in at least one
|
| 111 |
+
of the following places: within a NOTICE text file distributed
|
| 112 |
+
as part of the Derivative Works; within the Source form or
|
| 113 |
+
documentation, if provided along with the Derivative Works; or,
|
| 114 |
+
within a display generated by the Derivative Works, if and
|
| 115 |
+
wherever such third-party notices normally appear. The contents
|
| 116 |
+
of the NOTICE file are for informational purposes only and
|
| 117 |
+
do not modify the License. You may add Your own attribution
|
| 118 |
+
notices within Derivative Works that You distribute, alongside
|
| 119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
| 120 |
+
that such additional attribution notices cannot be construed
|
| 121 |
+
as modifying the License.
|
| 122 |
+
|
| 123 |
+
You may add Your own copyright statement to Your modifications and
|
| 124 |
+
may provide additional or different license terms and conditions
|
| 125 |
+
for use, reproduction, or distribution of Your modifications, or
|
| 126 |
+
for any such Derivative Works as a whole, provided Your use,
|
| 127 |
+
reproduction, and distribution of the Work otherwise complies with
|
| 128 |
+
the conditions stated in this License.
|
| 129 |
+
|
| 130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
| 131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
| 132 |
+
by You to the Licensor shall be under the terms and conditions of
|
| 133 |
+
this License, without any additional terms or conditions.
|
| 134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
| 135 |
+
the terms of any separate license agreement you may have executed
|
| 136 |
+
with Licensor regarding such Contributions.
|
| 137 |
+
|
| 138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
| 139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
| 140 |
+
except as required for reasonable and customary use in describing the
|
| 141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
| 142 |
+
|
| 143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
| 144 |
+
agreed to in writing, Licensor provides the Work (and each
|
| 145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
| 146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
| 147 |
+
implied, including, without limitation, any warranties or conditions
|
| 148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
| 149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
| 150 |
+
appropriateness of using or redistributing the Work and assume any
|
| 151 |
+
risks associated with Your exercise of permissions under this License.
|
| 152 |
+
|
| 153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
| 154 |
+
whether in tort (including negligence), contract, or otherwise,
|
| 155 |
+
unless required by applicable law (such as deliberate and grossly
|
| 156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
| 157 |
+
liable to You for damages, including any direct, indirect, special,
|
| 158 |
+
incidental, or consequential damages of any character arising as a
|
| 159 |
+
result of this License or out of the use or inability to use the
|
| 160 |
+
Work (including but not limited to damages for loss of goodwill,
|
| 161 |
+
work stoppage, computer failure or malfunction, or any and all
|
| 162 |
+
other commercial damages or losses), even if such Contributor
|
| 163 |
+
has been advised of the possibility of such damages.
|
| 164 |
+
|
| 165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
| 166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
| 167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
| 168 |
+
or other liability obligations and/or rights consistent with this
|
| 169 |
+
License. However, in accepting such obligations, You may act only
|
| 170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
| 171 |
+
of any other Contributor, and only if You agree to indemnify,
|
| 172 |
+
defend, and hold each Contributor harmless for any liability
|
| 173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
| 174 |
+
of your accepting any such warranty or additional liability.
|
| 175 |
+
|
| 176 |
+
END OF TERMS AND CONDITIONS
|
| 177 |
+
|
| 178 |
+
APPENDIX: How to apply the Apache License to your work.
|
| 179 |
+
|
| 180 |
+
To apply the Apache License to your work, attach the following
|
| 181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
| 182 |
+
replaced with your own identifying information. (Don't include
|
| 183 |
+
the brackets!) The text should be enclosed in the appropriate
|
| 184 |
+
comment syntax for the file format. We also recommend that a
|
| 185 |
+
file or class name and description of purpose be included on the
|
| 186 |
+
same "printed page" as the copyright notice for easier
|
| 187 |
+
identification within third-party archives.
|
| 188 |
+
|
| 189 |
+
Copyright [yyyy] [name of copyright owner]
|
| 190 |
+
|
| 191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 192 |
+
you may not use this file except in compliance with the License.
|
| 193 |
+
You may obtain a copy of the License at
|
| 194 |
+
|
| 195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 196 |
+
|
| 197 |
+
Unless required by applicable law or agreed to in writing, software
|
| 198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 200 |
+
See the License for the specific language governing permissions and
|
| 201 |
+
limitations under the License.
|
kokoro/__init__.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
__version__ = '0.9.4'
|
| 2 |
+
|
| 3 |
+
from loguru import logger
|
| 4 |
+
import sys
|
| 5 |
+
|
| 6 |
+
# Remove default handler
|
| 7 |
+
logger.remove()
|
| 8 |
+
|
| 9 |
+
# Add custom handler with clean format including module and line number
|
| 10 |
+
logger.add(
|
| 11 |
+
sys.stderr,
|
| 12 |
+
format="<green>{time:HH:mm:ss}</green> | <cyan>{module:>16}:{line}</cyan> | <level>{level: >8}</level> | <level>{message}</level>",
|
| 13 |
+
colorize=True,
|
| 14 |
+
level="INFO" # "DEBUG" to enable logger.debug("message") and up prints
|
| 15 |
+
# "ERROR" to enable only logger.error("message") prints
|
| 16 |
+
# etc
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
# Disable before release or as needed
|
| 20 |
+
logger.disable("kokoro")
|
| 21 |
+
|
| 22 |
+
from .model import KModel
|
| 23 |
+
from .pipeline import KPipeline
|
kokoro/__main__.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Kokoro TTS CLI
|
| 2 |
+
Example usage:
|
| 3 |
+
python3 -m kokoro --text "The sky above the port was the color of television, tuned to a dead channel." -o file.wav --debug
|
| 4 |
+
|
| 5 |
+
echo "Bom dia mundo, como vão vocês" > text.txt
|
| 6 |
+
python3 -m kokoro -i text.txt -l p --voice pm_alex > audio.wav
|
| 7 |
+
|
| 8 |
+
Common issues:
|
| 9 |
+
pip not installed: `uv pip install pip`
|
| 10 |
+
(Temporary workaround while https://github.com/explosion/spaCy/issues/13747 is not fixed)
|
| 11 |
+
|
| 12 |
+
espeak not installed: `apt-get install espeak-ng`
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import wave
|
| 17 |
+
from pathlib import Path
|
| 18 |
+
from typing import Generator, TYPE_CHECKING
|
| 19 |
+
|
| 20 |
+
import numpy as np
|
| 21 |
+
from loguru import logger
|
| 22 |
+
|
| 23 |
+
languages = [
|
| 24 |
+
"a", # American English
|
| 25 |
+
"b", # British English
|
| 26 |
+
"h", # Hindi
|
| 27 |
+
"e", # Spanish
|
| 28 |
+
"f", # French
|
| 29 |
+
"i", # Italian
|
| 30 |
+
"p", # Brazilian Portuguese
|
| 31 |
+
"j", # Japanese
|
| 32 |
+
"z", # Mandarin Chinese
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
if TYPE_CHECKING:
|
| 36 |
+
from kokoro import KPipeline
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def generate_audio(
|
| 40 |
+
text: str, kokoro_language: str, voice: str, speed=1
|
| 41 |
+
) -> Generator["KPipeline.Result", None, None]:
|
| 42 |
+
from kokoro import KPipeline
|
| 43 |
+
|
| 44 |
+
if not voice.startswith(kokoro_language):
|
| 45 |
+
logger.warning(f"Voice {voice} is not made for language {kokoro_language}")
|
| 46 |
+
pipeline = KPipeline(lang_code=kokoro_language)
|
| 47 |
+
yield from pipeline(text, voice=voice, speed=speed, split_pattern=r"\n+")
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def generate_and_save_audio(
|
| 51 |
+
output_file: Path, text: str, kokoro_language: str, voice: str, speed=1
|
| 52 |
+
) -> None:
|
| 53 |
+
with wave.open(str(output_file.resolve()), "wb") as wav_file:
|
| 54 |
+
wav_file.setnchannels(1) # Mono audio
|
| 55 |
+
wav_file.setsampwidth(2) # 2 bytes per sample (16-bit audio)
|
| 56 |
+
wav_file.setframerate(24000) # Sample rate
|
| 57 |
+
|
| 58 |
+
for result in generate_audio(
|
| 59 |
+
text, kokoro_language=kokoro_language, voice=voice, speed=speed
|
| 60 |
+
):
|
| 61 |
+
logger.debug(result.phonemes)
|
| 62 |
+
if result.audio is None:
|
| 63 |
+
continue
|
| 64 |
+
audio_bytes = (result.audio.numpy() * 32767).astype(np.int16).tobytes()
|
| 65 |
+
wav_file.writeframes(audio_bytes)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def main() -> None:
|
| 69 |
+
parser = argparse.ArgumentParser()
|
| 70 |
+
parser.add_argument(
|
| 71 |
+
"-m",
|
| 72 |
+
"--voice",
|
| 73 |
+
default="af_heart",
|
| 74 |
+
help="Voice to use",
|
| 75 |
+
)
|
| 76 |
+
parser.add_argument(
|
| 77 |
+
"-l",
|
| 78 |
+
"--language",
|
| 79 |
+
help="Language to use (defaults to the one corresponding to the voice)",
|
| 80 |
+
choices=languages,
|
| 81 |
+
)
|
| 82 |
+
parser.add_argument(
|
| 83 |
+
"-o",
|
| 84 |
+
"--output-file",
|
| 85 |
+
"--output_file",
|
| 86 |
+
type=Path,
|
| 87 |
+
help="Path to output WAV file",
|
| 88 |
+
required=True,
|
| 89 |
+
)
|
| 90 |
+
parser.add_argument(
|
| 91 |
+
"-i",
|
| 92 |
+
"--input-file",
|
| 93 |
+
"--input_file",
|
| 94 |
+
type=Path,
|
| 95 |
+
help="Path to input text file (default: stdin)",
|
| 96 |
+
)
|
| 97 |
+
parser.add_argument(
|
| 98 |
+
"-t",
|
| 99 |
+
"--text",
|
| 100 |
+
help="Text to use instead of reading from stdin",
|
| 101 |
+
)
|
| 102 |
+
parser.add_argument(
|
| 103 |
+
"-s",
|
| 104 |
+
"--speed",
|
| 105 |
+
type=float,
|
| 106 |
+
default=1.0,
|
| 107 |
+
help="Speech speed",
|
| 108 |
+
)
|
| 109 |
+
parser.add_argument(
|
| 110 |
+
"--debug",
|
| 111 |
+
action="store_true",
|
| 112 |
+
help="Print DEBUG messages to console",
|
| 113 |
+
)
|
| 114 |
+
args = parser.parse_args()
|
| 115 |
+
if args.debug:
|
| 116 |
+
logger.level("DEBUG")
|
| 117 |
+
logger.debug(args)
|
| 118 |
+
|
| 119 |
+
lang = args.language or args.voice[0]
|
| 120 |
+
|
| 121 |
+
if args.text is not None and args.input_file is not None:
|
| 122 |
+
raise Exception("You cannot specify both 'text' and 'input_file'")
|
| 123 |
+
elif args.text:
|
| 124 |
+
text = args.text
|
| 125 |
+
elif args.input_file:
|
| 126 |
+
file: Path = args.input_file
|
| 127 |
+
text = file.read_text()
|
| 128 |
+
else:
|
| 129 |
+
import sys
|
| 130 |
+
print("Press Ctrl+D to stop reading input and start generating", flush=True)
|
| 131 |
+
text = '\n'.join(sys.stdin)
|
| 132 |
+
|
| 133 |
+
logger.debug(f"Input text: {text!r}")
|
| 134 |
+
|
| 135 |
+
out_file: Path = args.output_file
|
| 136 |
+
if not out_file.suffix == ".wav":
|
| 137 |
+
logger.warning("The output file name should end with .wav")
|
| 138 |
+
generate_and_save_audio(
|
| 139 |
+
output_file=out_file,
|
| 140 |
+
text=text,
|
| 141 |
+
kokoro_language=lang,
|
| 142 |
+
voice=args.voice,
|
| 143 |
+
speed=args.speed,
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
if __name__ == "__main__":
|
| 148 |
+
main()
|
kokoro/custom_stft.py
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from attr import attr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
|
| 7 |
+
class CustomSTFT(nn.Module):
|
| 8 |
+
"""
|
| 9 |
+
STFT/iSTFT without unfold/complex ops, using conv1d and conv_transpose1d.
|
| 10 |
+
|
| 11 |
+
- forward STFT => Real-part conv1d + Imag-part conv1d
|
| 12 |
+
- inverse STFT => Real-part conv_transpose1d + Imag-part conv_transpose1d + sum
|
| 13 |
+
- avoids F.unfold, so easier to export to ONNX
|
| 14 |
+
- uses replicate or constant padding for 'center=True' to approximate 'reflect'
|
| 15 |
+
(reflect is not supported for dynamic shapes in ONNX)
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
def __init__(
|
| 19 |
+
self,
|
| 20 |
+
filter_length=800,
|
| 21 |
+
hop_length=200,
|
| 22 |
+
win_length=800,
|
| 23 |
+
window="hann",
|
| 24 |
+
center=True,
|
| 25 |
+
pad_mode="replicate", # or 'constant'
|
| 26 |
+
):
|
| 27 |
+
super().__init__()
|
| 28 |
+
self.filter_length = filter_length
|
| 29 |
+
self.hop_length = hop_length
|
| 30 |
+
self.win_length = win_length
|
| 31 |
+
self.n_fft = filter_length
|
| 32 |
+
self.center = center
|
| 33 |
+
self.pad_mode = pad_mode
|
| 34 |
+
|
| 35 |
+
# Number of frequency bins for real-valued STFT with onesided=True
|
| 36 |
+
self.freq_bins = self.n_fft // 2 + 1
|
| 37 |
+
|
| 38 |
+
# Build window
|
| 39 |
+
assert window == 'hann', window
|
| 40 |
+
window_tensor = torch.hann_window(win_length, periodic=True, dtype=torch.float32)
|
| 41 |
+
if self.win_length < self.n_fft:
|
| 42 |
+
# Zero-pad up to n_fft
|
| 43 |
+
extra = self.n_fft - self.win_length
|
| 44 |
+
window_tensor = F.pad(window_tensor, (0, extra))
|
| 45 |
+
elif self.win_length > self.n_fft:
|
| 46 |
+
window_tensor = window_tensor[: self.n_fft]
|
| 47 |
+
self.register_buffer("window", window_tensor)
|
| 48 |
+
|
| 49 |
+
# Precompute forward DFT (real, imag)
|
| 50 |
+
# PyTorch stft uses e^{-j 2 pi k n / N} => real=cos(...), imag=-sin(...)
|
| 51 |
+
n = np.arange(self.n_fft)
|
| 52 |
+
k = np.arange(self.freq_bins)
|
| 53 |
+
angle = 2 * np.pi * np.outer(k, n) / self.n_fft # shape (freq_bins, n_fft)
|
| 54 |
+
dft_real = np.cos(angle)
|
| 55 |
+
dft_imag = -np.sin(angle) # note negative sign
|
| 56 |
+
|
| 57 |
+
# Combine window and dft => shape (freq_bins, filter_length)
|
| 58 |
+
# We'll make 2 conv weight tensors of shape (freq_bins, 1, filter_length).
|
| 59 |
+
forward_window = window_tensor.numpy() # shape (n_fft,)
|
| 60 |
+
forward_real = dft_real * forward_window # (freq_bins, n_fft)
|
| 61 |
+
forward_imag = dft_imag * forward_window
|
| 62 |
+
|
| 63 |
+
# Convert to PyTorch
|
| 64 |
+
forward_real_torch = torch.from_numpy(forward_real).float()
|
| 65 |
+
forward_imag_torch = torch.from_numpy(forward_imag).float()
|
| 66 |
+
|
| 67 |
+
# Register as Conv1d weight => (out_channels, in_channels, kernel_size)
|
| 68 |
+
# out_channels = freq_bins, in_channels=1, kernel_size=n_fft
|
| 69 |
+
self.register_buffer(
|
| 70 |
+
"weight_forward_real", forward_real_torch.unsqueeze(1)
|
| 71 |
+
)
|
| 72 |
+
self.register_buffer(
|
| 73 |
+
"weight_forward_imag", forward_imag_torch.unsqueeze(1)
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
# Precompute inverse DFT
|
| 77 |
+
# Real iFFT formula => scale = 1/n_fft, doubling for bins 1..freq_bins-2 if n_fft even, etc.
|
| 78 |
+
# For simplicity, we won't do the "DC/nyquist not doubled" approach here.
|
| 79 |
+
# If you want perfect real iSTFT, you can add that logic.
|
| 80 |
+
# This version just yields good approximate reconstruction with Hann + typical overlap.
|
| 81 |
+
inv_scale = 1.0 / self.n_fft
|
| 82 |
+
n = np.arange(self.n_fft)
|
| 83 |
+
angle_t = 2 * np.pi * np.outer(n, k) / self.n_fft # shape (n_fft, freq_bins)
|
| 84 |
+
idft_cos = np.cos(angle_t).T # => (freq_bins, n_fft)
|
| 85 |
+
idft_sin = np.sin(angle_t).T # => (freq_bins, n_fft)
|
| 86 |
+
|
| 87 |
+
# Multiply by window again for typical overlap-add
|
| 88 |
+
# We also incorporate the scale factor 1/n_fft
|
| 89 |
+
inv_window = window_tensor.numpy() * inv_scale
|
| 90 |
+
backward_real = idft_cos * inv_window # (freq_bins, n_fft)
|
| 91 |
+
backward_imag = idft_sin * inv_window
|
| 92 |
+
|
| 93 |
+
# We'll implement iSTFT as real+imag conv_transpose with stride=hop.
|
| 94 |
+
self.register_buffer(
|
| 95 |
+
"weight_backward_real", torch.from_numpy(backward_real).float().unsqueeze(1)
|
| 96 |
+
)
|
| 97 |
+
self.register_buffer(
|
| 98 |
+
"weight_backward_imag", torch.from_numpy(backward_imag).float().unsqueeze(1)
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def transform(self, waveform: torch.Tensor):
|
| 104 |
+
"""
|
| 105 |
+
Forward STFT => returns magnitude, phase
|
| 106 |
+
Output shape => (batch, freq_bins, frames)
|
| 107 |
+
"""
|
| 108 |
+
# waveform shape => (B, T). conv1d expects (B, 1, T).
|
| 109 |
+
# Optional center pad
|
| 110 |
+
if self.center:
|
| 111 |
+
pad_len = self.n_fft // 2
|
| 112 |
+
waveform = F.pad(waveform, (pad_len, pad_len), mode=self.pad_mode)
|
| 113 |
+
|
| 114 |
+
x = waveform.unsqueeze(1) # => (B, 1, T)
|
| 115 |
+
# Convolution to get real part => shape (B, freq_bins, frames)
|
| 116 |
+
real_out = F.conv1d(
|
| 117 |
+
x,
|
| 118 |
+
self.weight_forward_real,
|
| 119 |
+
bias=None,
|
| 120 |
+
stride=self.hop_length,
|
| 121 |
+
padding=0,
|
| 122 |
+
)
|
| 123 |
+
# Imag part
|
| 124 |
+
imag_out = F.conv1d(
|
| 125 |
+
x,
|
| 126 |
+
self.weight_forward_imag,
|
| 127 |
+
bias=None,
|
| 128 |
+
stride=self.hop_length,
|
| 129 |
+
padding=0,
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
# magnitude, phase
|
| 133 |
+
magnitude = torch.sqrt(real_out**2 + imag_out**2 + 1e-14)
|
| 134 |
+
phase = torch.atan2(imag_out, real_out)
|
| 135 |
+
# Handle the case where imag_out is 0 and real_out is negative to correct ONNX atan2 to match PyTorch
|
| 136 |
+
# In this case, PyTorch returns pi, ONNX returns -pi
|
| 137 |
+
correction_mask = (imag_out == 0) & (real_out < 0)
|
| 138 |
+
phase[correction_mask] = torch.pi
|
| 139 |
+
return magnitude, phase
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def inverse(self, magnitude: torch.Tensor, phase: torch.Tensor, length=None):
|
| 143 |
+
"""
|
| 144 |
+
Inverse STFT => returns waveform shape (B, T).
|
| 145 |
+
"""
|
| 146 |
+
# magnitude, phase => (B, freq_bins, frames)
|
| 147 |
+
# Re-create real/imag => shape (B, freq_bins, frames)
|
| 148 |
+
real_part = magnitude * torch.cos(phase)
|
| 149 |
+
imag_part = magnitude * torch.sin(phase)
|
| 150 |
+
|
| 151 |
+
# conv_transpose wants shape (B, freq_bins, frames). We'll treat "frames" as time dimension
|
| 152 |
+
# so we do (B, freq_bins, frames) => (B, freq_bins, frames)
|
| 153 |
+
# But PyTorch conv_transpose1d expects (B, in_channels, input_length)
|
| 154 |
+
real_part = real_part # (B, freq_bins, frames)
|
| 155 |
+
imag_part = imag_part
|
| 156 |
+
|
| 157 |
+
# real iSTFT => convolve with "backward_real", "backward_imag", and sum
|
| 158 |
+
# We'll do 2 conv_transpose calls, each giving (B, 1, time),
|
| 159 |
+
# then add them => (B, 1, time).
|
| 160 |
+
real_rec = F.conv_transpose1d(
|
| 161 |
+
real_part,
|
| 162 |
+
self.weight_backward_real, # shape (freq_bins, 1, filter_length)
|
| 163 |
+
bias=None,
|
| 164 |
+
stride=self.hop_length,
|
| 165 |
+
padding=0,
|
| 166 |
+
)
|
| 167 |
+
imag_rec = F.conv_transpose1d(
|
| 168 |
+
imag_part,
|
| 169 |
+
self.weight_backward_imag,
|
| 170 |
+
bias=None,
|
| 171 |
+
stride=self.hop_length,
|
| 172 |
+
padding=0,
|
| 173 |
+
)
|
| 174 |
+
# sum => (B, 1, time)
|
| 175 |
+
waveform = real_rec - imag_rec # typical real iFFT has minus for imaginary part
|
| 176 |
+
|
| 177 |
+
# If we used "center=True" in forward, we should remove pad
|
| 178 |
+
if self.center:
|
| 179 |
+
pad_len = self.n_fft // 2
|
| 180 |
+
# Because of transposed convolution, total length might have extra samples
|
| 181 |
+
# We remove `pad_len` from start & end if possible
|
| 182 |
+
waveform = waveform[..., pad_len:-pad_len]
|
| 183 |
+
|
| 184 |
+
# If a specific length is desired, clamp
|
| 185 |
+
if length is not None:
|
| 186 |
+
waveform = waveform[..., :length]
|
| 187 |
+
|
| 188 |
+
# shape => (B, T)
|
| 189 |
+
return waveform
|
| 190 |
+
|
| 191 |
+
def forward(self, x: torch.Tensor):
|
| 192 |
+
"""
|
| 193 |
+
Full STFT -> iSTFT pass: returns time-domain reconstruction.
|
| 194 |
+
Same interface as your original code.
|
| 195 |
+
"""
|
| 196 |
+
mag, phase = self.transform(x)
|
| 197 |
+
return self.inverse(mag, phase, length=x.shape[-1])
|
kokoro/istftnet.py
ADDED
|
@@ -0,0 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ADAPTED from https://github.com/yl4579/StyleTTS2/blob/main/Modules/istftnet.py
|
| 2 |
+
from kokoro.custom_stft import CustomSTFT
|
| 3 |
+
from torch.nn.utils import weight_norm
|
| 4 |
+
import math
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# https://github.com/yl4579/StyleTTS2/blob/main/Modules/utils.py
|
| 11 |
+
def init_weights(m, mean=0.0, std=0.01):
|
| 12 |
+
classname = m.__class__.__name__
|
| 13 |
+
if classname.find("Conv") != -1:
|
| 14 |
+
m.weight.data.normal_(mean, std)
|
| 15 |
+
|
| 16 |
+
def get_padding(kernel_size, dilation=1):
|
| 17 |
+
return int((kernel_size*dilation - dilation)/2)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class AdaIN1d(nn.Module):
|
| 21 |
+
def __init__(self, style_dim, num_features):
|
| 22 |
+
super().__init__()
|
| 23 |
+
# affine should be False, however there's a bug in the old torch.onnx.export (not newer dynamo) that causes the channel dimension to be lost if affine=False. When affine is true, there's additional learnably parameters. This shouldn't really matter setting it to True, since we're in inference mode
|
| 24 |
+
self.norm = nn.InstanceNorm1d(num_features, affine=True)
|
| 25 |
+
self.fc = nn.Linear(style_dim, num_features*2)
|
| 26 |
+
|
| 27 |
+
def forward(self, x, s):
|
| 28 |
+
h = self.fc(s)
|
| 29 |
+
h = h.view(h.size(0), h.size(1), 1)
|
| 30 |
+
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
| 31 |
+
return (1 + gamma) * self.norm(x) + beta
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class AdaINResBlock1(nn.Module):
|
| 35 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
|
| 36 |
+
super(AdaINResBlock1, self).__init__()
|
| 37 |
+
self.convs1 = nn.ModuleList([
|
| 38 |
+
weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
| 39 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
| 40 |
+
weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
| 41 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
| 42 |
+
weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
| 43 |
+
padding=get_padding(kernel_size, dilation[2])))
|
| 44 |
+
])
|
| 45 |
+
self.convs1.apply(init_weights)
|
| 46 |
+
self.convs2 = nn.ModuleList([
|
| 47 |
+
weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 48 |
+
padding=get_padding(kernel_size, 1))),
|
| 49 |
+
weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 50 |
+
padding=get_padding(kernel_size, 1))),
|
| 51 |
+
weight_norm(nn.Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 52 |
+
padding=get_padding(kernel_size, 1)))
|
| 53 |
+
])
|
| 54 |
+
self.convs2.apply(init_weights)
|
| 55 |
+
self.adain1 = nn.ModuleList([
|
| 56 |
+
AdaIN1d(style_dim, channels),
|
| 57 |
+
AdaIN1d(style_dim, channels),
|
| 58 |
+
AdaIN1d(style_dim, channels),
|
| 59 |
+
])
|
| 60 |
+
self.adain2 = nn.ModuleList([
|
| 61 |
+
AdaIN1d(style_dim, channels),
|
| 62 |
+
AdaIN1d(style_dim, channels),
|
| 63 |
+
AdaIN1d(style_dim, channels),
|
| 64 |
+
])
|
| 65 |
+
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
|
| 66 |
+
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
|
| 67 |
+
|
| 68 |
+
def forward(self, x, s):
|
| 69 |
+
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
|
| 70 |
+
xt = n1(x, s)
|
| 71 |
+
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
|
| 72 |
+
xt = c1(xt)
|
| 73 |
+
xt = n2(xt, s)
|
| 74 |
+
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
|
| 75 |
+
xt = c2(xt)
|
| 76 |
+
x = xt + x
|
| 77 |
+
return x
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
class TorchSTFT(nn.Module):
|
| 81 |
+
def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'):
|
| 82 |
+
super().__init__()
|
| 83 |
+
self.filter_length = filter_length
|
| 84 |
+
self.hop_length = hop_length
|
| 85 |
+
self.win_length = win_length
|
| 86 |
+
assert window == 'hann', window
|
| 87 |
+
self.window = torch.hann_window(win_length, periodic=True, dtype=torch.float32)
|
| 88 |
+
|
| 89 |
+
def transform(self, input_data):
|
| 90 |
+
forward_transform = torch.stft(
|
| 91 |
+
input_data,
|
| 92 |
+
self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device),
|
| 93 |
+
return_complex=True)
|
| 94 |
+
return torch.abs(forward_transform), torch.angle(forward_transform)
|
| 95 |
+
|
| 96 |
+
def inverse(self, magnitude, phase):
|
| 97 |
+
inverse_transform = torch.istft(
|
| 98 |
+
magnitude * torch.exp(phase * 1j),
|
| 99 |
+
self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device))
|
| 100 |
+
return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation
|
| 101 |
+
|
| 102 |
+
def forward(self, input_data):
|
| 103 |
+
self.magnitude, self.phase = self.transform(input_data)
|
| 104 |
+
reconstruction = self.inverse(self.magnitude, self.phase)
|
| 105 |
+
return reconstruction
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
class SineGen(nn.Module):
|
| 109 |
+
""" Definition of sine generator
|
| 110 |
+
SineGen(samp_rate, harmonic_num = 0,
|
| 111 |
+
sine_amp = 0.1, noise_std = 0.003,
|
| 112 |
+
voiced_threshold = 0,
|
| 113 |
+
flag_for_pulse=False)
|
| 114 |
+
samp_rate: sampling rate in Hz
|
| 115 |
+
harmonic_num: number of harmonic overtones (default 0)
|
| 116 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
| 117 |
+
noise_std: std of Gaussian noise (default 0.003)
|
| 118 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
| 119 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
| 120 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
| 121 |
+
segment is always sin(torch.pi) or cos(0)
|
| 122 |
+
"""
|
| 123 |
+
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
|
| 124 |
+
sine_amp=0.1, noise_std=0.003,
|
| 125 |
+
voiced_threshold=0,
|
| 126 |
+
flag_for_pulse=False):
|
| 127 |
+
super(SineGen, self).__init__()
|
| 128 |
+
self.sine_amp = sine_amp
|
| 129 |
+
self.noise_std = noise_std
|
| 130 |
+
self.harmonic_num = harmonic_num
|
| 131 |
+
self.dim = self.harmonic_num + 1
|
| 132 |
+
self.sampling_rate = samp_rate
|
| 133 |
+
self.voiced_threshold = voiced_threshold
|
| 134 |
+
self.flag_for_pulse = flag_for_pulse
|
| 135 |
+
self.upsample_scale = upsample_scale
|
| 136 |
+
|
| 137 |
+
def _f02uv(self, f0):
|
| 138 |
+
# generate uv signal
|
| 139 |
+
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
| 140 |
+
return uv
|
| 141 |
+
|
| 142 |
+
def _f02sine(self, f0_values):
|
| 143 |
+
""" f0_values: (batchsize, length, dim)
|
| 144 |
+
where dim indicates fundamental tone and overtones
|
| 145 |
+
"""
|
| 146 |
+
# convert to F0 in rad. The interger part n can be ignored
|
| 147 |
+
# because 2 * torch.pi * n doesn't affect phase
|
| 148 |
+
rad_values = (f0_values / self.sampling_rate) % 1
|
| 149 |
+
# initial phase noise (no noise for fundamental component)
|
| 150 |
+
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], device=f0_values.device)
|
| 151 |
+
rand_ini[:, 0] = 0
|
| 152 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
| 153 |
+
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
|
| 154 |
+
if not self.flag_for_pulse:
|
| 155 |
+
rad_values = F.interpolate(rad_values.transpose(1, 2), scale_factor=1/self.upsample_scale, mode="linear").transpose(1, 2)
|
| 156 |
+
phase = torch.cumsum(rad_values, dim=1) * 2 * torch.pi
|
| 157 |
+
phase = F.interpolate(phase.transpose(1, 2) * self.upsample_scale, scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
| 158 |
+
sines = torch.sin(phase)
|
| 159 |
+
else:
|
| 160 |
+
# If necessary, make sure that the first time step of every
|
| 161 |
+
# voiced segments is sin(pi) or cos(0)
|
| 162 |
+
# This is used for pulse-train generation
|
| 163 |
+
# identify the last time step in unvoiced segments
|
| 164 |
+
uv = self._f02uv(f0_values)
|
| 165 |
+
uv_1 = torch.roll(uv, shifts=-1, dims=1)
|
| 166 |
+
uv_1[:, -1, :] = 1
|
| 167 |
+
u_loc = (uv < 1) * (uv_1 > 0)
|
| 168 |
+
# get the instantanouse phase
|
| 169 |
+
tmp_cumsum = torch.cumsum(rad_values, dim=1)
|
| 170 |
+
# different batch needs to be processed differently
|
| 171 |
+
for idx in range(f0_values.shape[0]):
|
| 172 |
+
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
|
| 173 |
+
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
|
| 174 |
+
# stores the accumulation of i.phase within
|
| 175 |
+
# each voiced segments
|
| 176 |
+
tmp_cumsum[idx, :, :] = 0
|
| 177 |
+
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
|
| 178 |
+
# rad_values - tmp_cumsum: remove the accumulation of i.phase
|
| 179 |
+
# within the previous voiced segment.
|
| 180 |
+
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
|
| 181 |
+
# get the sines
|
| 182 |
+
sines = torch.cos(i_phase * 2 * torch.pi)
|
| 183 |
+
return sines
|
| 184 |
+
|
| 185 |
+
def forward(self, f0):
|
| 186 |
+
""" sine_tensor, uv = forward(f0)
|
| 187 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
| 188 |
+
f0 for unvoiced steps should be 0
|
| 189 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
| 190 |
+
output uv: tensor(batchsize=1, length, 1)
|
| 191 |
+
"""
|
| 192 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
|
| 193 |
+
# fundamental component
|
| 194 |
+
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
|
| 195 |
+
# generate sine waveforms
|
| 196 |
+
sine_waves = self._f02sine(fn) * self.sine_amp
|
| 197 |
+
# generate uv signal
|
| 198 |
+
# uv = torch.ones(f0.shape)
|
| 199 |
+
# uv = uv * (f0 > self.voiced_threshold)
|
| 200 |
+
uv = self._f02uv(f0)
|
| 201 |
+
# noise: for unvoiced should be similar to sine_amp
|
| 202 |
+
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
| 203 |
+
# for voiced regions is self.noise_std
|
| 204 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
| 205 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
| 206 |
+
# first: set the unvoiced part to 0 by uv
|
| 207 |
+
# then: additive noise
|
| 208 |
+
sine_waves = sine_waves * uv + noise
|
| 209 |
+
return sine_waves, uv, noise
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
class SourceModuleHnNSF(nn.Module):
|
| 213 |
+
""" SourceModule for hn-nsf
|
| 214 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
| 215 |
+
add_noise_std=0.003, voiced_threshod=0)
|
| 216 |
+
sampling_rate: sampling_rate in Hz
|
| 217 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
| 218 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
| 219 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
| 220 |
+
note that amplitude of noise in unvoiced is decided
|
| 221 |
+
by sine_amp
|
| 222 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
| 223 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 224 |
+
F0_sampled (batchsize, length, 1)
|
| 225 |
+
Sine_source (batchsize, length, 1)
|
| 226 |
+
noise_source (batchsize, length 1)
|
| 227 |
+
uv (batchsize, length, 1)
|
| 228 |
+
"""
|
| 229 |
+
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
| 230 |
+
add_noise_std=0.003, voiced_threshod=0):
|
| 231 |
+
super(SourceModuleHnNSF, self).__init__()
|
| 232 |
+
self.sine_amp = sine_amp
|
| 233 |
+
self.noise_std = add_noise_std
|
| 234 |
+
# to produce sine waveforms
|
| 235 |
+
self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
|
| 236 |
+
sine_amp, add_noise_std, voiced_threshod)
|
| 237 |
+
# to merge source harmonics into a single excitation
|
| 238 |
+
self.l_linear = nn.Linear(harmonic_num + 1, 1)
|
| 239 |
+
self.l_tanh = nn.Tanh()
|
| 240 |
+
|
| 241 |
+
def forward(self, x):
|
| 242 |
+
"""
|
| 243 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 244 |
+
F0_sampled (batchsize, length, 1)
|
| 245 |
+
Sine_source (batchsize, length, 1)
|
| 246 |
+
noise_source (batchsize, length 1)
|
| 247 |
+
"""
|
| 248 |
+
# source for harmonic branch
|
| 249 |
+
with torch.no_grad():
|
| 250 |
+
sine_wavs, uv, _ = self.l_sin_gen(x)
|
| 251 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
| 252 |
+
# source for noise branch, in the same shape as uv
|
| 253 |
+
noise = torch.randn_like(uv) * self.sine_amp / 3
|
| 254 |
+
return sine_merge, noise, uv
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
class Generator(nn.Module):
|
| 258 |
+
def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size, disable_complex=False):
|
| 259 |
+
super(Generator, self).__init__()
|
| 260 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 261 |
+
self.num_upsamples = len(upsample_rates)
|
| 262 |
+
self.m_source = SourceModuleHnNSF(
|
| 263 |
+
sampling_rate=24000,
|
| 264 |
+
upsample_scale=math.prod(upsample_rates) * gen_istft_hop_size,
|
| 265 |
+
harmonic_num=8, voiced_threshod=10)
|
| 266 |
+
self.f0_upsamp = nn.Upsample(scale_factor=math.prod(upsample_rates) * gen_istft_hop_size)
|
| 267 |
+
self.noise_convs = nn.ModuleList()
|
| 268 |
+
self.noise_res = nn.ModuleList()
|
| 269 |
+
self.ups = nn.ModuleList()
|
| 270 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 271 |
+
self.ups.append(weight_norm(
|
| 272 |
+
nn.ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
| 273 |
+
k, u, padding=(k-u)//2)))
|
| 274 |
+
self.resblocks = nn.ModuleList()
|
| 275 |
+
for i in range(len(self.ups)):
|
| 276 |
+
ch = upsample_initial_channel//(2**(i+1))
|
| 277 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)):
|
| 278 |
+
self.resblocks.append(AdaINResBlock1(ch, k, d, style_dim))
|
| 279 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
| 280 |
+
if i + 1 < len(upsample_rates):
|
| 281 |
+
stride_f0 = math.prod(upsample_rates[i + 1:])
|
| 282 |
+
self.noise_convs.append(nn.Conv1d(
|
| 283 |
+
gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
|
| 284 |
+
self.noise_res.append(AdaINResBlock1(c_cur, 7, [1,3,5], style_dim))
|
| 285 |
+
else:
|
| 286 |
+
self.noise_convs.append(nn.Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1))
|
| 287 |
+
self.noise_res.append(AdaINResBlock1(c_cur, 11, [1,3,5], style_dim))
|
| 288 |
+
self.post_n_fft = gen_istft_n_fft
|
| 289 |
+
self.conv_post = weight_norm(nn.Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
|
| 290 |
+
self.ups.apply(init_weights)
|
| 291 |
+
self.conv_post.apply(init_weights)
|
| 292 |
+
self.reflection_pad = nn.ReflectionPad1d((1, 0))
|
| 293 |
+
self.stft = (
|
| 294 |
+
CustomSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
|
| 295 |
+
if disable_complex
|
| 296 |
+
else TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
def forward(self, x, s, f0):
|
| 300 |
+
with torch.no_grad():
|
| 301 |
+
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
| 302 |
+
har_source, noi_source, uv = self.m_source(f0)
|
| 303 |
+
har_source = har_source.transpose(1, 2).squeeze(1)
|
| 304 |
+
har_spec, har_phase = self.stft.transform(har_source)
|
| 305 |
+
har = torch.cat([har_spec, har_phase], dim=1)
|
| 306 |
+
for i in range(self.num_upsamples):
|
| 307 |
+
x = F.leaky_relu(x, negative_slope=0.1)
|
| 308 |
+
x_source = self.noise_convs[i](har)
|
| 309 |
+
x_source = self.noise_res[i](x_source, s)
|
| 310 |
+
x = self.ups[i](x)
|
| 311 |
+
if i == self.num_upsamples - 1:
|
| 312 |
+
x = self.reflection_pad(x)
|
| 313 |
+
x = x + x_source
|
| 314 |
+
xs = None
|
| 315 |
+
for j in range(self.num_kernels):
|
| 316 |
+
if xs is None:
|
| 317 |
+
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
| 318 |
+
else:
|
| 319 |
+
xs += self.resblocks[i*self.num_kernels+j](x, s)
|
| 320 |
+
x = xs / self.num_kernels
|
| 321 |
+
x = F.leaky_relu(x)
|
| 322 |
+
x = self.conv_post(x)
|
| 323 |
+
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
|
| 324 |
+
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
|
| 325 |
+
return self.stft.inverse(spec, phase)
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
class UpSample1d(nn.Module):
|
| 329 |
+
def __init__(self, layer_type):
|
| 330 |
+
super().__init__()
|
| 331 |
+
self.layer_type = layer_type
|
| 332 |
+
|
| 333 |
+
def forward(self, x):
|
| 334 |
+
if self.layer_type == 'none':
|
| 335 |
+
return x
|
| 336 |
+
else:
|
| 337 |
+
return F.interpolate(x, scale_factor=2, mode='nearest')
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
class AdainResBlk1d(nn.Module):
|
| 341 |
+
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2), upsample='none', dropout_p=0.0):
|
| 342 |
+
super().__init__()
|
| 343 |
+
self.actv = actv
|
| 344 |
+
self.upsample_type = upsample
|
| 345 |
+
self.upsample = UpSample1d(upsample)
|
| 346 |
+
self.learned_sc = dim_in != dim_out
|
| 347 |
+
self._build_weights(dim_in, dim_out, style_dim)
|
| 348 |
+
self.dropout = nn.Dropout(dropout_p)
|
| 349 |
+
if upsample == 'none':
|
| 350 |
+
self.pool = nn.Identity()
|
| 351 |
+
else:
|
| 352 |
+
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
| 353 |
+
|
| 354 |
+
def _build_weights(self, dim_in, dim_out, style_dim):
|
| 355 |
+
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
| 356 |
+
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
| 357 |
+
self.norm1 = AdaIN1d(style_dim, dim_in)
|
| 358 |
+
self.norm2 = AdaIN1d(style_dim, dim_out)
|
| 359 |
+
if self.learned_sc:
|
| 360 |
+
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
| 361 |
+
|
| 362 |
+
def _shortcut(self, x):
|
| 363 |
+
x = self.upsample(x)
|
| 364 |
+
if self.learned_sc:
|
| 365 |
+
x = self.conv1x1(x)
|
| 366 |
+
return x
|
| 367 |
+
|
| 368 |
+
def _residual(self, x, s):
|
| 369 |
+
x = self.norm1(x, s)
|
| 370 |
+
x = self.actv(x)
|
| 371 |
+
x = self.pool(x)
|
| 372 |
+
x = self.conv1(self.dropout(x))
|
| 373 |
+
x = self.norm2(x, s)
|
| 374 |
+
x = self.actv(x)
|
| 375 |
+
x = self.conv2(self.dropout(x))
|
| 376 |
+
return x
|
| 377 |
+
|
| 378 |
+
def forward(self, x, s):
|
| 379 |
+
out = self._residual(x, s)
|
| 380 |
+
out = (out + self._shortcut(x)) * torch.rsqrt(torch.tensor(2))
|
| 381 |
+
return out
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
class Decoder(nn.Module):
|
| 385 |
+
def __init__(self, dim_in, style_dim, dim_out,
|
| 386 |
+
resblock_kernel_sizes,
|
| 387 |
+
upsample_rates,
|
| 388 |
+
upsample_initial_channel,
|
| 389 |
+
resblock_dilation_sizes,
|
| 390 |
+
upsample_kernel_sizes,
|
| 391 |
+
gen_istft_n_fft, gen_istft_hop_size,
|
| 392 |
+
disable_complex=False):
|
| 393 |
+
super().__init__()
|
| 394 |
+
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
|
| 395 |
+
self.decode = nn.ModuleList()
|
| 396 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
| 397 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
| 398 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
| 399 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
|
| 400 |
+
self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
| 401 |
+
self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
| 402 |
+
self.asr_res = nn.Sequential(weight_norm(nn.Conv1d(512, 64, kernel_size=1)))
|
| 403 |
+
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates,
|
| 404 |
+
upsample_initial_channel, resblock_dilation_sizes,
|
| 405 |
+
upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size, disable_complex=disable_complex)
|
| 406 |
+
|
| 407 |
+
def forward(self, asr, F0_curve, N, s):
|
| 408 |
+
F0 = self.F0_conv(F0_curve.unsqueeze(1))
|
| 409 |
+
N = self.N_conv(N.unsqueeze(1))
|
| 410 |
+
x = torch.cat([asr, F0, N], axis=1)
|
| 411 |
+
x = self.encode(x, s)
|
| 412 |
+
asr_res = self.asr_res(asr)
|
| 413 |
+
res = True
|
| 414 |
+
for block in self.decode:
|
| 415 |
+
if res:
|
| 416 |
+
x = torch.cat([x, asr_res, F0, N], axis=1)
|
| 417 |
+
x = block(x, s)
|
| 418 |
+
if block.upsample_type != "none":
|
| 419 |
+
res = False
|
| 420 |
+
x = self.generator(x, s, F0_curve)
|
| 421 |
+
return x
|
kokoro/model.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .istftnet import Decoder
|
| 2 |
+
from .modules import CustomAlbert, ProsodyPredictor, TextEncoder
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
+
from loguru import logger
|
| 6 |
+
from transformers import AlbertConfig
|
| 7 |
+
from typing import Dict, Optional, Union
|
| 8 |
+
import json
|
| 9 |
+
import torch
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
class KModel(torch.nn.Module):
|
| 13 |
+
'''
|
| 14 |
+
KModel is a torch.nn.Module with 2 main responsibilities:
|
| 15 |
+
1. Init weights, downloading config.json + model.pth from HF if needed
|
| 16 |
+
2. forward(phonemes: str, ref_s: FloatTensor) -> (audio: FloatTensor)
|
| 17 |
+
|
| 18 |
+
You likely only need one KModel instance, and it can be reused across
|
| 19 |
+
multiple KPipelines to avoid redundant memory allocation.
|
| 20 |
+
|
| 21 |
+
Unlike KPipeline, KModel is language-blind.
|
| 22 |
+
|
| 23 |
+
KModel stores self.vocab and thus knows how to map phonemes -> input_ids,
|
| 24 |
+
so there is no need to repeatedly download config.json outside of KModel.
|
| 25 |
+
'''
|
| 26 |
+
|
| 27 |
+
MODEL_NAMES = {
|
| 28 |
+
'hexgrad/Kokoro-82M': 'kokoro-v1_0.pth',
|
| 29 |
+
'hexgrad/Kokoro-82M-v1.1-zh': 'kokoro-v1_1-zh.pth',
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
def __init__(
|
| 33 |
+
self,
|
| 34 |
+
repo_id: Optional[str] = None,
|
| 35 |
+
config: Union[Dict, str, None] = None,
|
| 36 |
+
model: Optional[str] = None,
|
| 37 |
+
disable_complex: bool = False
|
| 38 |
+
):
|
| 39 |
+
super().__init__()
|
| 40 |
+
if repo_id is None:
|
| 41 |
+
repo_id = 'hexgrad/Kokoro-82M'
|
| 42 |
+
print(f"WARNING: Defaulting repo_id to {repo_id}. Pass repo_id='{repo_id}' to suppress this warning.")
|
| 43 |
+
self.repo_id = repo_id
|
| 44 |
+
if not isinstance(config, dict):
|
| 45 |
+
if not config:
|
| 46 |
+
logger.debug("No config provided, downloading from HF")
|
| 47 |
+
config = hf_hub_download(repo_id=repo_id, filename='config.json')
|
| 48 |
+
with open(config, 'r', encoding='utf-8') as r:
|
| 49 |
+
config = json.load(r)
|
| 50 |
+
logger.debug(f"Loaded config: {config}")
|
| 51 |
+
self.vocab = config['vocab']
|
| 52 |
+
self.bert = CustomAlbert(AlbertConfig(vocab_size=config['n_token'], **config['plbert']))
|
| 53 |
+
self.bert_encoder = torch.nn.Linear(self.bert.config.hidden_size, config['hidden_dim'])
|
| 54 |
+
self.context_length = self.bert.config.max_position_embeddings
|
| 55 |
+
self.predictor = ProsodyPredictor(
|
| 56 |
+
style_dim=config['style_dim'], d_hid=config['hidden_dim'],
|
| 57 |
+
nlayers=config['n_layer'], max_dur=config['max_dur'], dropout=config['dropout']
|
| 58 |
+
)
|
| 59 |
+
self.text_encoder = TextEncoder(
|
| 60 |
+
channels=config['hidden_dim'], kernel_size=config['text_encoder_kernel_size'],
|
| 61 |
+
depth=config['n_layer'], n_symbols=config['n_token']
|
| 62 |
+
)
|
| 63 |
+
self.decoder = Decoder(
|
| 64 |
+
dim_in=config['hidden_dim'], style_dim=config['style_dim'],
|
| 65 |
+
dim_out=config['n_mels'], disable_complex=disable_complex, **config['istftnet']
|
| 66 |
+
)
|
| 67 |
+
if not model:
|
| 68 |
+
try:
|
| 69 |
+
model = hf_hub_download(repo_id=repo_id, filename=KModel.MODEL_NAMES[repo_id])
|
| 70 |
+
except:
|
| 71 |
+
model = os.path.join(repo_id, 'kokoro-v1_0.pth')
|
| 72 |
+
for key, state_dict in torch.load(model, map_location='cpu', weights_only=True).items():
|
| 73 |
+
assert hasattr(self, key), key
|
| 74 |
+
try:
|
| 75 |
+
getattr(self, key).load_state_dict(state_dict)
|
| 76 |
+
except:
|
| 77 |
+
logger.debug(f"Did not load {key} from state_dict")
|
| 78 |
+
state_dict = {k[7:]: v for k, v in state_dict.items()}
|
| 79 |
+
getattr(self, key).load_state_dict(state_dict, strict=False)
|
| 80 |
+
|
| 81 |
+
@property
|
| 82 |
+
def device(self):
|
| 83 |
+
return self.bert.device
|
| 84 |
+
|
| 85 |
+
@dataclass
|
| 86 |
+
class Output:
|
| 87 |
+
audio: torch.FloatTensor
|
| 88 |
+
pred_dur: Optional[torch.LongTensor] = None
|
| 89 |
+
|
| 90 |
+
@torch.no_grad()
|
| 91 |
+
def forward_with_tokens(
|
| 92 |
+
self,
|
| 93 |
+
input_ids: torch.LongTensor,
|
| 94 |
+
ref_s: torch.FloatTensor,
|
| 95 |
+
speed: float = 1
|
| 96 |
+
) -> tuple[torch.FloatTensor, torch.LongTensor]:
|
| 97 |
+
input_lengths = torch.full(
|
| 98 |
+
(input_ids.shape[0],),
|
| 99 |
+
input_ids.shape[-1],
|
| 100 |
+
device=input_ids.device,
|
| 101 |
+
dtype=torch.long
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
text_mask = torch.arange(input_lengths.max()).unsqueeze(0).expand(input_lengths.shape[0], -1).type_as(input_lengths)
|
| 105 |
+
text_mask = torch.gt(text_mask+1, input_lengths.unsqueeze(1)).to(self.device)
|
| 106 |
+
bert_dur = self.bert(input_ids, attention_mask=(~text_mask).int())
|
| 107 |
+
d_en = self.bert_encoder(bert_dur).transpose(-1, -2)
|
| 108 |
+
s = ref_s[:, 128:]
|
| 109 |
+
d = self.predictor.text_encoder(d_en, s, input_lengths, text_mask)
|
| 110 |
+
x, _ = self.predictor.lstm(d)
|
| 111 |
+
duration = self.predictor.duration_proj(x)
|
| 112 |
+
duration = torch.sigmoid(duration).sum(axis=-1) / speed
|
| 113 |
+
pred_dur = torch.round(duration).clamp(min=1).long().squeeze()
|
| 114 |
+
indices = torch.repeat_interleave(torch.arange(input_ids.shape[1], device=self.device), pred_dur)
|
| 115 |
+
pred_aln_trg = torch.zeros((input_ids.shape[1], indices.shape[0]), device=self.device)
|
| 116 |
+
pred_aln_trg[indices, torch.arange(indices.shape[0])] = 1
|
| 117 |
+
pred_aln_trg = pred_aln_trg.unsqueeze(0).to(self.device)
|
| 118 |
+
en = d.transpose(-1, -2) @ pred_aln_trg
|
| 119 |
+
F0_pred, N_pred = self.predictor.F0Ntrain(en, s)
|
| 120 |
+
t_en = self.text_encoder(input_ids, input_lengths, text_mask)
|
| 121 |
+
asr = t_en @ pred_aln_trg
|
| 122 |
+
audio = self.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze()
|
| 123 |
+
return audio, pred_dur
|
| 124 |
+
|
| 125 |
+
def forward(
|
| 126 |
+
self,
|
| 127 |
+
phonemes: str,
|
| 128 |
+
ref_s: torch.FloatTensor,
|
| 129 |
+
speed: float = 1,
|
| 130 |
+
return_output: bool = False
|
| 131 |
+
) -> Union['KModel.Output', torch.FloatTensor]:
|
| 132 |
+
input_ids = list(filter(lambda i: i is not None, map(lambda p: self.vocab.get(p), phonemes)))
|
| 133 |
+
logger.debug(f"phonemes: {phonemes} -> input_ids: {input_ids}")
|
| 134 |
+
assert len(input_ids)+2 <= self.context_length, (len(input_ids)+2, self.context_length)
|
| 135 |
+
input_ids = torch.LongTensor([[0, *input_ids, 0]]).to(self.device)
|
| 136 |
+
ref_s = ref_s.to(self.device)
|
| 137 |
+
audio, pred_dur = self.forward_with_tokens(input_ids, ref_s, speed)
|
| 138 |
+
audio = audio.squeeze().cpu()
|
| 139 |
+
pred_dur = pred_dur.cpu() if pred_dur is not None else None
|
| 140 |
+
logger.debug(f"pred_dur: {pred_dur}")
|
| 141 |
+
return self.Output(audio=audio, pred_dur=pred_dur) if return_output else audio
|
| 142 |
+
|
| 143 |
+
class KModelForONNX(torch.nn.Module):
|
| 144 |
+
def __init__(self, kmodel: KModel):
|
| 145 |
+
super().__init__()
|
| 146 |
+
self.kmodel = kmodel
|
| 147 |
+
|
| 148 |
+
def forward(
|
| 149 |
+
self,
|
| 150 |
+
input_ids: torch.LongTensor,
|
| 151 |
+
ref_s: torch.FloatTensor,
|
| 152 |
+
speed: float = 1
|
| 153 |
+
) -> tuple[torch.FloatTensor, torch.LongTensor]:
|
| 154 |
+
waveform, duration = self.kmodel.forward_with_tokens(input_ids, ref_s, speed)
|
| 155 |
+
return waveform, duration
|
kokoro/modules.py
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# https://github.com/yl4579/StyleTTS2/blob/main/models.py
|
| 2 |
+
from .istftnet import AdainResBlk1d
|
| 3 |
+
from torch.nn.utils import weight_norm
|
| 4 |
+
from transformers import AlbertModel
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class LinearNorm(nn.Module):
|
| 12 |
+
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
| 13 |
+
super(LinearNorm, self).__init__()
|
| 14 |
+
self.linear_layer = nn.Linear(in_dim, out_dim, bias=bias)
|
| 15 |
+
nn.init.xavier_uniform_(self.linear_layer.weight, gain=nn.init.calculate_gain(w_init_gain))
|
| 16 |
+
|
| 17 |
+
def forward(self, x):
|
| 18 |
+
return self.linear_layer(x)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class LayerNorm(nn.Module):
|
| 22 |
+
def __init__(self, channels, eps=1e-5):
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.channels = channels
|
| 25 |
+
self.eps = eps
|
| 26 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
| 27 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
| 28 |
+
|
| 29 |
+
def forward(self, x):
|
| 30 |
+
x = x.transpose(1, -1)
|
| 31 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
| 32 |
+
return x.transpose(1, -1)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class TextEncoder(nn.Module):
|
| 36 |
+
def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
|
| 37 |
+
super().__init__()
|
| 38 |
+
self.embedding = nn.Embedding(n_symbols, channels)
|
| 39 |
+
padding = (kernel_size - 1) // 2
|
| 40 |
+
self.cnn = nn.ModuleList()
|
| 41 |
+
for _ in range(depth):
|
| 42 |
+
self.cnn.append(nn.Sequential(
|
| 43 |
+
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
|
| 44 |
+
LayerNorm(channels),
|
| 45 |
+
actv,
|
| 46 |
+
nn.Dropout(0.2),
|
| 47 |
+
))
|
| 48 |
+
self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
|
| 49 |
+
|
| 50 |
+
def forward(self, x, input_lengths, m):
|
| 51 |
+
x = self.embedding(x) # [B, T, emb]
|
| 52 |
+
x = x.transpose(1, 2) # [B, emb, T]
|
| 53 |
+
m = m.unsqueeze(1)
|
| 54 |
+
x.masked_fill_(m, 0.0)
|
| 55 |
+
for c in self.cnn:
|
| 56 |
+
x = c(x)
|
| 57 |
+
x.masked_fill_(m, 0.0)
|
| 58 |
+
x = x.transpose(1, 2) # [B, T, chn]
|
| 59 |
+
lengths = input_lengths if input_lengths.device == torch.device('cpu') else input_lengths.to('cpu')
|
| 60 |
+
x = nn.utils.rnn.pack_padded_sequence(x, lengths, batch_first=True, enforce_sorted=False)
|
| 61 |
+
self.lstm.flatten_parameters()
|
| 62 |
+
x, _ = self.lstm(x)
|
| 63 |
+
x, _ = nn.utils.rnn.pad_packed_sequence(x, batch_first=True)
|
| 64 |
+
x = x.transpose(-1, -2)
|
| 65 |
+
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]], device=x.device)
|
| 66 |
+
x_pad[:, :, :x.shape[-1]] = x
|
| 67 |
+
x = x_pad
|
| 68 |
+
x.masked_fill_(m, 0.0)
|
| 69 |
+
return x
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class AdaLayerNorm(nn.Module):
|
| 73 |
+
def __init__(self, style_dim, channels, eps=1e-5):
|
| 74 |
+
super().__init__()
|
| 75 |
+
self.channels = channels
|
| 76 |
+
self.eps = eps
|
| 77 |
+
self.fc = nn.Linear(style_dim, channels*2)
|
| 78 |
+
|
| 79 |
+
def forward(self, x, s):
|
| 80 |
+
x = x.transpose(-1, -2)
|
| 81 |
+
x = x.transpose(1, -1)
|
| 82 |
+
h = self.fc(s)
|
| 83 |
+
h = h.view(h.size(0), h.size(1), 1)
|
| 84 |
+
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
| 85 |
+
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
|
| 86 |
+
x = F.layer_norm(x, (self.channels,), eps=self.eps)
|
| 87 |
+
x = (1 + gamma) * x + beta
|
| 88 |
+
return x.transpose(1, -1).transpose(-1, -2)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
class ProsodyPredictor(nn.Module):
|
| 92 |
+
def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
|
| 93 |
+
super().__init__()
|
| 94 |
+
self.text_encoder = DurationEncoder(sty_dim=style_dim, d_model=d_hid,nlayers=nlayers, dropout=dropout)
|
| 95 |
+
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
| 96 |
+
self.duration_proj = LinearNorm(d_hid, max_dur)
|
| 97 |
+
self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
| 98 |
+
self.F0 = nn.ModuleList()
|
| 99 |
+
self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
| 100 |
+
self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
| 101 |
+
self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
| 102 |
+
self.N = nn.ModuleList()
|
| 103 |
+
self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
| 104 |
+
self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
| 105 |
+
self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
| 106 |
+
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
| 107 |
+
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
| 108 |
+
|
| 109 |
+
def forward(self, texts, style, text_lengths, alignment, m):
|
| 110 |
+
d = self.text_encoder(texts, style, text_lengths, m)
|
| 111 |
+
m = m.unsqueeze(1)
|
| 112 |
+
lengths = text_lengths if text_lengths.device == torch.device('cpu') else text_lengths.to('cpu')
|
| 113 |
+
x = nn.utils.rnn.pack_padded_sequence(d, lengths, batch_first=True, enforce_sorted=False)
|
| 114 |
+
self.lstm.flatten_parameters()
|
| 115 |
+
x, _ = self.lstm(x)
|
| 116 |
+
x, _ = nn.utils.rnn.pad_packed_sequence(x, batch_first=True)
|
| 117 |
+
x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]], device=x.device)
|
| 118 |
+
x_pad[:, :x.shape[1], :] = x
|
| 119 |
+
x = x_pad
|
| 120 |
+
duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=False))
|
| 121 |
+
en = (d.transpose(-1, -2) @ alignment)
|
| 122 |
+
return duration.squeeze(-1), en
|
| 123 |
+
|
| 124 |
+
def F0Ntrain(self, x, s):
|
| 125 |
+
x, _ = self.shared(x.transpose(-1, -2))
|
| 126 |
+
F0 = x.transpose(-1, -2)
|
| 127 |
+
for block in self.F0:
|
| 128 |
+
F0 = block(F0, s)
|
| 129 |
+
F0 = self.F0_proj(F0)
|
| 130 |
+
N = x.transpose(-1, -2)
|
| 131 |
+
for block in self.N:
|
| 132 |
+
N = block(N, s)
|
| 133 |
+
N = self.N_proj(N)
|
| 134 |
+
return F0.squeeze(1), N.squeeze(1)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
class DurationEncoder(nn.Module):
|
| 138 |
+
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
|
| 139 |
+
super().__init__()
|
| 140 |
+
self.lstms = nn.ModuleList()
|
| 141 |
+
for _ in range(nlayers):
|
| 142 |
+
self.lstms.append(nn.LSTM(d_model + sty_dim, d_model // 2, num_layers=1, batch_first=True, bidirectional=True, dropout=dropout))
|
| 143 |
+
self.lstms.append(AdaLayerNorm(sty_dim, d_model))
|
| 144 |
+
self.dropout = dropout
|
| 145 |
+
self.d_model = d_model
|
| 146 |
+
self.sty_dim = sty_dim
|
| 147 |
+
|
| 148 |
+
def forward(self, x, style, text_lengths, m):
|
| 149 |
+
masks = m
|
| 150 |
+
x = x.permute(2, 0, 1)
|
| 151 |
+
s = style.expand(x.shape[0], x.shape[1], -1)
|
| 152 |
+
x = torch.cat([x, s], axis=-1)
|
| 153 |
+
x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
|
| 154 |
+
x = x.transpose(0, 1)
|
| 155 |
+
x = x.transpose(-1, -2)
|
| 156 |
+
for block in self.lstms:
|
| 157 |
+
if isinstance(block, AdaLayerNorm):
|
| 158 |
+
x = block(x.transpose(-1, -2), style).transpose(-1, -2)
|
| 159 |
+
x = torch.cat([x, s.permute(1, 2, 0)], axis=1)
|
| 160 |
+
x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
|
| 161 |
+
else:
|
| 162 |
+
lengths = text_lengths if text_lengths.device == torch.device('cpu') else text_lengths.to('cpu')
|
| 163 |
+
x = x.transpose(-1, -2)
|
| 164 |
+
x = nn.utils.rnn.pack_padded_sequence(
|
| 165 |
+
x, lengths, batch_first=True, enforce_sorted=False)
|
| 166 |
+
block.flatten_parameters()
|
| 167 |
+
x, _ = block(x)
|
| 168 |
+
x, _ = nn.utils.rnn.pad_packed_sequence(
|
| 169 |
+
x, batch_first=True)
|
| 170 |
+
x = F.dropout(x, p=self.dropout, training=False)
|
| 171 |
+
x = x.transpose(-1, -2)
|
| 172 |
+
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]], device=x.device)
|
| 173 |
+
x_pad[:, :, :x.shape[-1]] = x
|
| 174 |
+
x = x_pad
|
| 175 |
+
|
| 176 |
+
return x.transpose(-1, -2)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
# https://github.com/yl4579/StyleTTS2/blob/main/Utils/PLBERT/util.py
|
| 180 |
+
class CustomAlbert(AlbertModel):
|
| 181 |
+
def forward(self, *args, **kwargs):
|
| 182 |
+
outputs = super().forward(*args, **kwargs)
|
| 183 |
+
return outputs.last_hidden_state
|
kokoro/pipeline.py
ADDED
|
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .model import KModel
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from huggingface_hub import hf_hub_download
|
| 4 |
+
from loguru import logger
|
| 5 |
+
from misaki import en, espeak
|
| 6 |
+
from typing import Callable, Generator, List, Optional, Tuple, Union
|
| 7 |
+
import re
|
| 8 |
+
import torch
|
| 9 |
+
import os
|
| 10 |
+
|
| 11 |
+
ALIASES = {
|
| 12 |
+
'en-us': 'a',
|
| 13 |
+
'en-gb': 'b',
|
| 14 |
+
'es': 'e',
|
| 15 |
+
'fr-fr': 'f',
|
| 16 |
+
'hi': 'h',
|
| 17 |
+
'it': 'i',
|
| 18 |
+
'pt-br': 'p',
|
| 19 |
+
'ja': 'j',
|
| 20 |
+
'zh': 'z',
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
LANG_CODES = dict(
|
| 24 |
+
# pip install misaki[en]
|
| 25 |
+
a='American English',
|
| 26 |
+
b='British English',
|
| 27 |
+
|
| 28 |
+
# espeak-ng
|
| 29 |
+
e='es',
|
| 30 |
+
f='fr-fr',
|
| 31 |
+
h='hi',
|
| 32 |
+
i='it',
|
| 33 |
+
p='pt-br',
|
| 34 |
+
|
| 35 |
+
# pip install misaki[ja]
|
| 36 |
+
j='Japanese',
|
| 37 |
+
|
| 38 |
+
# pip install misaki[zh]
|
| 39 |
+
z='Mandarin Chinese',
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
class KPipeline:
|
| 43 |
+
'''
|
| 44 |
+
KPipeline is a language-aware support class with 2 main responsibilities:
|
| 45 |
+
1. Perform language-specific G2P, mapping (and chunking) text -> phonemes
|
| 46 |
+
2. Manage and store voices, lazily downloaded from HF if needed
|
| 47 |
+
|
| 48 |
+
You are expected to have one KPipeline per language. If you have multiple
|
| 49 |
+
KPipelines, you should reuse one KModel instance across all of them.
|
| 50 |
+
|
| 51 |
+
KPipeline is designed to work with a KModel, but this is not required.
|
| 52 |
+
There are 2 ways to pass an existing model into a pipeline:
|
| 53 |
+
1. On init: us_pipeline = KPipeline(lang_code='a', model=model)
|
| 54 |
+
2. On call: us_pipeline(text, voice, model=model)
|
| 55 |
+
|
| 56 |
+
By default, KPipeline will automatically initialize its own KModel. To
|
| 57 |
+
suppress this, construct a "quiet" KPipeline with model=False.
|
| 58 |
+
|
| 59 |
+
A "quiet" KPipeline yields (graphemes, phonemes, None) without generating
|
| 60 |
+
any audio. You can use this to phonemize and chunk your text in advance.
|
| 61 |
+
|
| 62 |
+
A "loud" KPipeline _with_ a model yields (graphemes, phonemes, audio).
|
| 63 |
+
'''
|
| 64 |
+
def __init__(
|
| 65 |
+
self,
|
| 66 |
+
lang_code: str,
|
| 67 |
+
repo_id: Optional[str] = None,
|
| 68 |
+
model: Union[KModel, bool] = True,
|
| 69 |
+
trf: bool = False,
|
| 70 |
+
en_callable: Optional[Callable[[str], str]] = None,
|
| 71 |
+
device: Optional[str] = None
|
| 72 |
+
):
|
| 73 |
+
"""Initialize a KPipeline.
|
| 74 |
+
|
| 75 |
+
Args:
|
| 76 |
+
lang_code: Language code for G2P processing
|
| 77 |
+
model: KModel instance, True to create new model, False for no model
|
| 78 |
+
trf: Whether to use transformer-based G2P
|
| 79 |
+
device: Override default device selection ('cuda' or 'cpu', or None for auto)
|
| 80 |
+
If None, will auto-select cuda if available
|
| 81 |
+
If 'cuda' and not available, will explicitly raise an error
|
| 82 |
+
"""
|
| 83 |
+
if repo_id is None:
|
| 84 |
+
repo_id = 'hexgrad/Kokoro-82M'
|
| 85 |
+
print(f"WARNING: Defaulting repo_id to {repo_id}. Pass repo_id='{repo_id}' to suppress this warning.")
|
| 86 |
+
config=None
|
| 87 |
+
else:
|
| 88 |
+
config = os.path.join(repo_id, 'config.json')
|
| 89 |
+
self.repo_id = repo_id
|
| 90 |
+
lang_code = lang_code.lower()
|
| 91 |
+
lang_code = ALIASES.get(lang_code, lang_code)
|
| 92 |
+
assert lang_code in LANG_CODES, (lang_code, LANG_CODES)
|
| 93 |
+
self.lang_code = lang_code
|
| 94 |
+
self.model = None
|
| 95 |
+
if isinstance(model, KModel):
|
| 96 |
+
self.model = model
|
| 97 |
+
elif model:
|
| 98 |
+
if device == 'cuda' and not torch.cuda.is_available():
|
| 99 |
+
raise RuntimeError("CUDA requested but not available")
|
| 100 |
+
if device == 'mps' and not torch.backends.mps.is_available():
|
| 101 |
+
raise RuntimeError("MPS requested but not available")
|
| 102 |
+
if device == 'mps' and os.environ.get('PYTORCH_ENABLE_MPS_FALLBACK') != '1':
|
| 103 |
+
raise RuntimeError("MPS requested but fallback not enabled")
|
| 104 |
+
if device is None:
|
| 105 |
+
if torch.cuda.is_available():
|
| 106 |
+
device = 'cuda'
|
| 107 |
+
elif os.environ.get('PYTORCH_ENABLE_MPS_FALLBACK') == '1' and torch.backends.mps.is_available():
|
| 108 |
+
device = 'mps'
|
| 109 |
+
else:
|
| 110 |
+
device = 'cpu'
|
| 111 |
+
try:
|
| 112 |
+
self.model = KModel(repo_id=repo_id, config=config).to(device).eval()
|
| 113 |
+
except RuntimeError as e:
|
| 114 |
+
if device == 'cuda':
|
| 115 |
+
raise RuntimeError(f"""Failed to initialize model on CUDA: {e}.
|
| 116 |
+
Try setting device='cpu' or check CUDA installation.""")
|
| 117 |
+
raise
|
| 118 |
+
self.voices = {}
|
| 119 |
+
if lang_code in 'ab':
|
| 120 |
+
try:
|
| 121 |
+
fallback = espeak.EspeakFallback(british=lang_code=='b')
|
| 122 |
+
except Exception as e:
|
| 123 |
+
logger.warning("EspeakFallback not Enabled: OOD words will be skipped")
|
| 124 |
+
logger.warning({str(e)})
|
| 125 |
+
fallback = None
|
| 126 |
+
self.g2p = en.G2P(trf=trf, british=lang_code=='b', fallback=fallback, unk='')
|
| 127 |
+
elif lang_code == 'j':
|
| 128 |
+
try:
|
| 129 |
+
from misaki import ja
|
| 130 |
+
self.g2p = ja.JAG2P()
|
| 131 |
+
except ImportError:
|
| 132 |
+
logger.error("You need to `pip install misaki[ja]` to use lang_code='j'")
|
| 133 |
+
raise
|
| 134 |
+
elif lang_code == 'z':
|
| 135 |
+
try:
|
| 136 |
+
from misaki import zh
|
| 137 |
+
self.g2p = zh.ZHG2P(
|
| 138 |
+
version=None if repo_id.endswith('/Kokoro-82M') else '1.1',
|
| 139 |
+
en_callable=en_callable
|
| 140 |
+
)
|
| 141 |
+
except ImportError:
|
| 142 |
+
logger.error("You need to `pip install misaki[zh]` to use lang_code='z'")
|
| 143 |
+
raise
|
| 144 |
+
else:
|
| 145 |
+
language = LANG_CODES[lang_code]
|
| 146 |
+
logger.warning(f"Using EspeakG2P(language='{language}'). Chunking logic not yet implemented, so long texts may be truncated unless you split them with '\\n'.")
|
| 147 |
+
self.g2p = espeak.EspeakG2P(language=language)
|
| 148 |
+
|
| 149 |
+
def load_single_voice(self, voice: str):
|
| 150 |
+
if voice in self.voices:
|
| 151 |
+
return self.voices[voice]
|
| 152 |
+
if voice.endswith('.pt'):
|
| 153 |
+
f = voice
|
| 154 |
+
else:
|
| 155 |
+
f = hf_hub_download(repo_id=self.repo_id, filename=f'voices/{voice}.pt')
|
| 156 |
+
if not voice.startswith(self.lang_code):
|
| 157 |
+
v = LANG_CODES.get(voice, voice)
|
| 158 |
+
p = LANG_CODES.get(self.lang_code, self.lang_code)
|
| 159 |
+
logger.warning(f'Language mismatch, loading {v} voice into {p} pipeline.')
|
| 160 |
+
pack = torch.load(f, weights_only=True)
|
| 161 |
+
self.voices[voice] = pack
|
| 162 |
+
return pack
|
| 163 |
+
|
| 164 |
+
"""
|
| 165 |
+
load_voice is a helper function that lazily downloads and loads a voice:
|
| 166 |
+
Single voice can be requested (e.g. 'af_bella') or multiple voices (e.g. 'af_bella,af_jessica').
|
| 167 |
+
If multiple voices are requested, they are averaged.
|
| 168 |
+
Delimiter is optional and defaults to ','.
|
| 169 |
+
"""
|
| 170 |
+
def load_voice(self, voice: Union[str, torch.FloatTensor], delimiter: str = ",") -> torch.FloatTensor:
|
| 171 |
+
if isinstance(voice, torch.FloatTensor):
|
| 172 |
+
return voice
|
| 173 |
+
if voice in self.voices:
|
| 174 |
+
return self.voices[voice]
|
| 175 |
+
logger.debug(f"Loading voice: {voice}")
|
| 176 |
+
packs = [self.load_single_voice(v) for v in voice.split(delimiter)]
|
| 177 |
+
if len(packs) == 1:
|
| 178 |
+
return packs[0]
|
| 179 |
+
self.voices[voice] = torch.mean(torch.stack(packs), dim=0)
|
| 180 |
+
return self.voices[voice]
|
| 181 |
+
|
| 182 |
+
@staticmethod
|
| 183 |
+
def tokens_to_ps(tokens: List[en.MToken]) -> str:
|
| 184 |
+
return ''.join(t.phonemes + (' ' if t.whitespace else '') for t in tokens).strip()
|
| 185 |
+
|
| 186 |
+
@staticmethod
|
| 187 |
+
def waterfall_last(
|
| 188 |
+
tokens: List[en.MToken],
|
| 189 |
+
next_count: int,
|
| 190 |
+
waterfall: List[str] = ['!.?…', ':;', ',—'],
|
| 191 |
+
bumps: List[str] = [')', '”']
|
| 192 |
+
) -> int:
|
| 193 |
+
for w in waterfall:
|
| 194 |
+
z = next((i for i, t in reversed(list(enumerate(tokens))) if t.phonemes in set(w)), None)
|
| 195 |
+
if z is None:
|
| 196 |
+
continue
|
| 197 |
+
z += 1
|
| 198 |
+
if z < len(tokens) and tokens[z].phonemes in bumps:
|
| 199 |
+
z += 1
|
| 200 |
+
if next_count - len(KPipeline.tokens_to_ps(tokens[:z])) <= 510:
|
| 201 |
+
return z
|
| 202 |
+
return len(tokens)
|
| 203 |
+
|
| 204 |
+
@staticmethod
|
| 205 |
+
def tokens_to_text(tokens: List[en.MToken]) -> str:
|
| 206 |
+
return ''.join(t.text + t.whitespace for t in tokens).strip()
|
| 207 |
+
|
| 208 |
+
def en_tokenize(
|
| 209 |
+
self,
|
| 210 |
+
tokens: List[en.MToken]
|
| 211 |
+
) -> Generator[Tuple[str, str, List[en.MToken]], None, None]:
|
| 212 |
+
tks = []
|
| 213 |
+
pcount = 0
|
| 214 |
+
for t in tokens:
|
| 215 |
+
# American English: ɾ => T
|
| 216 |
+
t.phonemes = '' if t.phonemes is None else t.phonemes#.replace('ɾ', 'T')
|
| 217 |
+
next_ps = t.phonemes + (' ' if t.whitespace else '')
|
| 218 |
+
next_pcount = pcount + len(next_ps.rstrip())
|
| 219 |
+
if next_pcount > 510:
|
| 220 |
+
z = KPipeline.waterfall_last(tks, next_pcount)
|
| 221 |
+
text = KPipeline.tokens_to_text(tks[:z])
|
| 222 |
+
logger.debug(f"Chunking text at {z}: '{text[:30]}{'...' if len(text) > 30 else ''}'")
|
| 223 |
+
ps = KPipeline.tokens_to_ps(tks[:z])
|
| 224 |
+
yield text, ps, tks[:z]
|
| 225 |
+
tks = tks[z:]
|
| 226 |
+
pcount = len(KPipeline.tokens_to_ps(tks))
|
| 227 |
+
if not tks:
|
| 228 |
+
next_ps = next_ps.lstrip()
|
| 229 |
+
tks.append(t)
|
| 230 |
+
pcount += len(next_ps)
|
| 231 |
+
if tks:
|
| 232 |
+
text = KPipeline.tokens_to_text(tks)
|
| 233 |
+
ps = KPipeline.tokens_to_ps(tks)
|
| 234 |
+
yield ''.join(text).strip(), ''.join(ps).strip(), tks
|
| 235 |
+
|
| 236 |
+
@staticmethod
|
| 237 |
+
def infer(
|
| 238 |
+
model: KModel,
|
| 239 |
+
ps: str,
|
| 240 |
+
pack: torch.FloatTensor,
|
| 241 |
+
speed: Union[float, Callable[[int], float]] = 1
|
| 242 |
+
) -> KModel.Output:
|
| 243 |
+
if callable(speed):
|
| 244 |
+
speed = speed(len(ps))
|
| 245 |
+
return model(ps, pack[len(ps)-1], speed, return_output=True)
|
| 246 |
+
|
| 247 |
+
def generate_from_tokens(
|
| 248 |
+
self,
|
| 249 |
+
tokens: Union[str, List[en.MToken]],
|
| 250 |
+
voice: str,
|
| 251 |
+
speed: float = 1,
|
| 252 |
+
model: Optional[KModel] = None
|
| 253 |
+
) -> Generator['KPipeline.Result', None, None]:
|
| 254 |
+
"""Generate audio from either raw phonemes or pre-processed tokens.
|
| 255 |
+
|
| 256 |
+
Args:
|
| 257 |
+
tokens: Either a phoneme string or list of pre-processed MTokens
|
| 258 |
+
voice: The voice to use for synthesis
|
| 259 |
+
speed: Speech speed modifier (default: 1)
|
| 260 |
+
model: Optional KModel instance (uses pipeline's model if not provided)
|
| 261 |
+
|
| 262 |
+
Yields:
|
| 263 |
+
KPipeline.Result containing the input tokens and generated audio
|
| 264 |
+
|
| 265 |
+
Raises:
|
| 266 |
+
ValueError: If no voice is provided or token sequence exceeds model limits
|
| 267 |
+
"""
|
| 268 |
+
model = model or self.model
|
| 269 |
+
if model and voice is None:
|
| 270 |
+
raise ValueError('Specify a voice: pipeline.generate_from_tokens(..., voice="af_heart")')
|
| 271 |
+
|
| 272 |
+
pack = self.load_voice(voice).to(model.device) if model else None
|
| 273 |
+
|
| 274 |
+
# Handle raw phoneme string
|
| 275 |
+
if isinstance(tokens, str):
|
| 276 |
+
logger.debug("Processing phonemes from raw string")
|
| 277 |
+
if len(tokens) > 510:
|
| 278 |
+
raise ValueError(f'Phoneme string too long: {len(tokens)} > 510')
|
| 279 |
+
output = KPipeline.infer(model, tokens, pack, speed) if model else None
|
| 280 |
+
yield self.Result(graphemes='', phonemes=tokens, output=output)
|
| 281 |
+
return
|
| 282 |
+
|
| 283 |
+
logger.debug("Processing MTokens")
|
| 284 |
+
# Handle pre-processed tokens
|
| 285 |
+
for gs, ps, tks in self.en_tokenize(tokens):
|
| 286 |
+
if not ps:
|
| 287 |
+
continue
|
| 288 |
+
elif len(ps) > 510:
|
| 289 |
+
logger.warning(f"Unexpected len(ps) == {len(ps)} > 510 and ps == '{ps}'")
|
| 290 |
+
logger.warning("Truncating to 510 characters")
|
| 291 |
+
ps = ps[:510]
|
| 292 |
+
output = KPipeline.infer(model, ps, pack, speed) if model else None
|
| 293 |
+
if output is not None and output.pred_dur is not None:
|
| 294 |
+
KPipeline.join_timestamps(tks, output.pred_dur)
|
| 295 |
+
yield self.Result(graphemes=gs, phonemes=ps, tokens=tks, output=output)
|
| 296 |
+
|
| 297 |
+
@staticmethod
|
| 298 |
+
def join_timestamps(tokens: List[en.MToken], pred_dur: torch.LongTensor):
|
| 299 |
+
# Multiply by 600 to go from pred_dur frames to sample_rate 24000
|
| 300 |
+
# Equivalent to dividing pred_dur frames by 40 to get timestamp in seconds
|
| 301 |
+
# We will count nice round half-frames, so the divisor is 80
|
| 302 |
+
MAGIC_DIVISOR = 80
|
| 303 |
+
if not tokens or len(pred_dur) < 3:
|
| 304 |
+
# We expect at least 3: <bos>, token, <eos>
|
| 305 |
+
return
|
| 306 |
+
# We track 2 counts, measured in half-frames: (left, right)
|
| 307 |
+
# This way we can cut space characters in half
|
| 308 |
+
# TODO: Is -3 an appropriate offset?
|
| 309 |
+
left = right = 2 * max(0, pred_dur[0].item() - 3)
|
| 310 |
+
# Updates:
|
| 311 |
+
# left = right + (2 * token_dur) + space_dur
|
| 312 |
+
# right = left + space_dur
|
| 313 |
+
i = 1
|
| 314 |
+
for t in tokens:
|
| 315 |
+
if i >= len(pred_dur)-1:
|
| 316 |
+
break
|
| 317 |
+
if not t.phonemes:
|
| 318 |
+
if t.whitespace:
|
| 319 |
+
i += 1
|
| 320 |
+
left = right + pred_dur[i].item()
|
| 321 |
+
right = left + pred_dur[i].item()
|
| 322 |
+
i += 1
|
| 323 |
+
continue
|
| 324 |
+
j = i + len(t.phonemes)
|
| 325 |
+
if j >= len(pred_dur):
|
| 326 |
+
break
|
| 327 |
+
t.start_ts = left / MAGIC_DIVISOR
|
| 328 |
+
token_dur = pred_dur[i: j].sum().item()
|
| 329 |
+
space_dur = pred_dur[j].item() if t.whitespace else 0
|
| 330 |
+
left = right + (2 * token_dur) + space_dur
|
| 331 |
+
t.end_ts = left / MAGIC_DIVISOR
|
| 332 |
+
right = left + space_dur
|
| 333 |
+
i = j + (1 if t.whitespace else 0)
|
| 334 |
+
|
| 335 |
+
@dataclass
|
| 336 |
+
class Result:
|
| 337 |
+
graphemes: str
|
| 338 |
+
phonemes: str
|
| 339 |
+
tokens: Optional[List[en.MToken]] = None
|
| 340 |
+
output: Optional[KModel.Output] = None
|
| 341 |
+
text_index: Optional[int] = None
|
| 342 |
+
|
| 343 |
+
@property
|
| 344 |
+
def audio(self) -> Optional[torch.FloatTensor]:
|
| 345 |
+
return None if self.output is None else self.output.audio
|
| 346 |
+
|
| 347 |
+
@property
|
| 348 |
+
def pred_dur(self) -> Optional[torch.LongTensor]:
|
| 349 |
+
return None if self.output is None else self.output.pred_dur
|
| 350 |
+
|
| 351 |
+
### MARK: BEGIN BACKWARD COMPAT ###
|
| 352 |
+
def __iter__(self):
|
| 353 |
+
yield self.graphemes
|
| 354 |
+
yield self.phonemes
|
| 355 |
+
yield self.audio
|
| 356 |
+
|
| 357 |
+
def __getitem__(self, index):
|
| 358 |
+
return [self.graphemes, self.phonemes, self.audio][index]
|
| 359 |
+
|
| 360 |
+
def __len__(self):
|
| 361 |
+
return 3
|
| 362 |
+
#### MARK: END BACKWARD COMPAT ####
|
| 363 |
+
|
| 364 |
+
def __call__(
|
| 365 |
+
self,
|
| 366 |
+
text: Union[str, List[str]],
|
| 367 |
+
voice: Optional[str] = None,
|
| 368 |
+
speed: Union[float, Callable[[int], float]] = 1,
|
| 369 |
+
split_pattern: Optional[str] = r'\n+',
|
| 370 |
+
model: Optional[KModel] = None
|
| 371 |
+
) -> Generator['KPipeline.Result', None, None]:
|
| 372 |
+
model = model or self.model
|
| 373 |
+
if model and voice is None:
|
| 374 |
+
raise ValueError('Specify a voice: en_us_pipeline(text="Hello world!", voice="af_heart")')
|
| 375 |
+
pack = self.load_voice(voice).to(model.device) if model else None
|
| 376 |
+
|
| 377 |
+
# Convert input to list of segments
|
| 378 |
+
if isinstance(text, str):
|
| 379 |
+
text = re.split(split_pattern, text.strip()) if split_pattern else [text]
|
| 380 |
+
|
| 381 |
+
# Process each segment
|
| 382 |
+
for graphemes_index, graphemes in enumerate(text):
|
| 383 |
+
if not graphemes.strip(): # Skip empty segments
|
| 384 |
+
continue
|
| 385 |
+
|
| 386 |
+
# English processing (unchanged)
|
| 387 |
+
if self.lang_code in 'ab':
|
| 388 |
+
logger.debug(f"Processing English text: {graphemes[:50]}{'...' if len(graphemes) > 50 else ''}")
|
| 389 |
+
_, tokens = self.g2p(graphemes)
|
| 390 |
+
for gs, ps, tks in self.en_tokenize(tokens):
|
| 391 |
+
if not ps:
|
| 392 |
+
continue
|
| 393 |
+
elif len(ps) > 510:
|
| 394 |
+
logger.warning(f"Unexpected len(ps) == {len(ps)} > 510 and ps == '{ps}'")
|
| 395 |
+
ps = ps[:510]
|
| 396 |
+
output = KPipeline.infer(model, ps, pack, speed) if model else None
|
| 397 |
+
if output is not None and output.pred_dur is not None:
|
| 398 |
+
KPipeline.join_timestamps(tks, output.pred_dur)
|
| 399 |
+
yield self.Result(graphemes=gs, phonemes=ps, tokens=tks, output=output, text_index=graphemes_index)
|
| 400 |
+
|
| 401 |
+
# Non-English processing with chunking
|
| 402 |
+
else:
|
| 403 |
+
# Split long text into smaller chunks (roughly 400 characters each)
|
| 404 |
+
# Using sentence boundaries when possible
|
| 405 |
+
chunk_size = 400
|
| 406 |
+
chunks = []
|
| 407 |
+
|
| 408 |
+
# Try to split on sentence boundaries first
|
| 409 |
+
sentences = re.split(r'([.!?]+)', graphemes)
|
| 410 |
+
current_chunk = ""
|
| 411 |
+
|
| 412 |
+
for i in range(0, len(sentences), 2):
|
| 413 |
+
sentence = sentences[i]
|
| 414 |
+
# Add the punctuation back if it exists
|
| 415 |
+
if i + 1 < len(sentences):
|
| 416 |
+
sentence += sentences[i + 1]
|
| 417 |
+
|
| 418 |
+
if len(current_chunk) + len(sentence) <= chunk_size:
|
| 419 |
+
current_chunk += sentence
|
| 420 |
+
else:
|
| 421 |
+
if current_chunk:
|
| 422 |
+
chunks.append(current_chunk.strip())
|
| 423 |
+
current_chunk = sentence
|
| 424 |
+
|
| 425 |
+
if current_chunk:
|
| 426 |
+
chunks.append(current_chunk.strip())
|
| 427 |
+
|
| 428 |
+
# If no chunks were created (no sentence boundaries), fall back to character-based chunking
|
| 429 |
+
if not chunks:
|
| 430 |
+
chunks = [graphemes[i:i+chunk_size] for i in range(0, len(graphemes), chunk_size)]
|
| 431 |
+
|
| 432 |
+
# Process each chunk
|
| 433 |
+
for chunk in chunks:
|
| 434 |
+
if not chunk.strip():
|
| 435 |
+
continue
|
| 436 |
+
|
| 437 |
+
ps, _ = self.g2p(chunk)
|
| 438 |
+
if not ps:
|
| 439 |
+
continue
|
| 440 |
+
elif len(ps) > 510:
|
| 441 |
+
logger.warning(f'Truncating len(ps) == {len(ps)} > 510')
|
| 442 |
+
ps = ps[:510]
|
| 443 |
+
|
| 444 |
+
output = KPipeline.infer(model, ps, pack, speed) if model else None
|
| 445 |
+
yield self.Result(graphemes=chunk, phonemes=ps, output=output, text_index=graphemes_index)
|
requirements.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
opencv-python>=4.9.0.80
|
| 2 |
+
diffusers>=0.31.0
|
| 3 |
+
transformers>=4.49.0
|
| 4 |
+
tokenizers>=0.20.3
|
| 5 |
+
accelerate>=1.1.1
|
| 6 |
+
tqdm
|
| 7 |
+
imageio
|
| 8 |
+
easydict
|
| 9 |
+
ftfy
|
| 10 |
+
dashscope
|
| 11 |
+
imageio-ffmpeg
|
| 12 |
+
scikit-image
|
| 13 |
+
loguru
|
| 14 |
+
gradio>=5.0.0
|
| 15 |
+
numpy>=1.23.5,<2
|
| 16 |
+
xfuser>=0.4.1
|
| 17 |
+
pyloudnorm
|
| 18 |
+
optimum-quanto==0.2.6
|
| 19 |
+
scenedetect
|
| 20 |
+
moviepy==1.0.3
|
| 21 |
+
decord
|
tools/convert_img_to_video.py
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import yaml
|
| 2 |
+
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
class ImageProcessor:
|
| 7 |
+
def __init__(self, yaml_path):
|
| 8 |
+
with open(yaml_path, 'r') as f:
|
| 9 |
+
self.config = yaml.safe_load(f)
|
| 10 |
+
|
| 11 |
+
self.images_info = []
|
| 12 |
+
self.reference_size = None
|
| 13 |
+
self._load_images()
|
| 14 |
+
|
| 15 |
+
def _load_images(self):
|
| 16 |
+
for img_config in self.config['images']:
|
| 17 |
+
img = cv2.imread(img_config['path'])
|
| 18 |
+
if img is None:
|
| 19 |
+
raise ValueError(f"Cannot load image: {img_config['path']}")
|
| 20 |
+
|
| 21 |
+
info = {
|
| 22 |
+
'image': img,
|
| 23 |
+
'duration': float(img_config.get('duration', 1.0)),
|
| 24 |
+
'translation': img_config.get('translation', [0, 0]),
|
| 25 |
+
'scale': float(img_config.get('scale', 1.0))
|
| 26 |
+
}
|
| 27 |
+
self.images_info.append(info)
|
| 28 |
+
|
| 29 |
+
if self.reference_size is None:
|
| 30 |
+
self.reference_size = (img.shape[1], img.shape[0])
|
| 31 |
+
|
| 32 |
+
def _translate_image(self, img, translation):
|
| 33 |
+
"""Perform only translation"""
|
| 34 |
+
height, width = img.shape[:2]
|
| 35 |
+
|
| 36 |
+
# Calculate translation amount (pixels)
|
| 37 |
+
tx = int(width * translation[0] / 100)
|
| 38 |
+
ty = int(height * translation[1] / 100)
|
| 39 |
+
|
| 40 |
+
# Create translation matrix
|
| 41 |
+
M = np.float32([[1, 0, tx], [0, 1, ty]])
|
| 42 |
+
|
| 43 |
+
# Apply translation while maintaining original dimensions
|
| 44 |
+
translated = cv2.warpAffine(img, M, (width, height))
|
| 45 |
+
|
| 46 |
+
return translated
|
| 47 |
+
|
| 48 |
+
def _crop_black_borders(self, img):
|
| 49 |
+
"""Crop out black borders from the image"""
|
| 50 |
+
# Convert to grayscale
|
| 51 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
| 52 |
+
|
| 53 |
+
# Threshold to identify non-black areas
|
| 54 |
+
_, thresh = cv2.threshold(gray, 1, 255, cv2.THRESH_BINARY)
|
| 55 |
+
|
| 56 |
+
# Find bounding box of non-black pixels
|
| 57 |
+
coords = cv2.findNonZero(thresh)
|
| 58 |
+
if coords is None:
|
| 59 |
+
return img
|
| 60 |
+
|
| 61 |
+
x, y, w, h = cv2.boundingRect(coords)
|
| 62 |
+
|
| 63 |
+
# Crop the image to the bounding box
|
| 64 |
+
return img[y:y+h, x:x+w]
|
| 65 |
+
|
| 66 |
+
def _scale_image(self, img, scale, target_size):
|
| 67 |
+
"""Scale the image"""
|
| 68 |
+
if scale <= 1:
|
| 69 |
+
return cv2.resize(img, target_size)
|
| 70 |
+
|
| 71 |
+
# First scale up
|
| 72 |
+
height, width = img.shape[:2]
|
| 73 |
+
scaled_width = int(width * scale)
|
| 74 |
+
scaled_height = int(height * scale)
|
| 75 |
+
scaled = cv2.resize(img, (scaled_width, scaled_height))
|
| 76 |
+
|
| 77 |
+
# Center-crop to target dimensions
|
| 78 |
+
start_x = (scaled_width - target_size[0]) // 2
|
| 79 |
+
start_y = (scaled_height - target_size[1]) // 2
|
| 80 |
+
cropped = scaled[start_y:start_y+target_size[1],
|
| 81 |
+
start_x:start_x+target_size[0]]
|
| 82 |
+
|
| 83 |
+
return cropped
|
| 84 |
+
|
| 85 |
+
def _transform_image(self, img, translation, scale):
|
| 86 |
+
"""Apply transformations in sequence: translation → cropping → scaling"""
|
| 87 |
+
original_size = (img.shape[1], img.shape[0])
|
| 88 |
+
|
| 89 |
+
# 1. Translation
|
| 90 |
+
translated = self._translate_image(img, translation)
|
| 91 |
+
|
| 92 |
+
# 2. Black border cropping
|
| 93 |
+
cropped = self._crop_black_borders(translated)
|
| 94 |
+
|
| 95 |
+
# 3. Scale back to original dimensions
|
| 96 |
+
transformed = self._scale_image(cropped, scale, original_size)
|
| 97 |
+
|
| 98 |
+
return transformed
|
| 99 |
+
|
| 100 |
+
def create_video(self, output_path, fps=25):
|
| 101 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
| 102 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, self.reference_size)
|
| 103 |
+
|
| 104 |
+
try:
|
| 105 |
+
for info in self.images_info:
|
| 106 |
+
# Transform image
|
| 107 |
+
transformed = self._transform_image(
|
| 108 |
+
info['image'],
|
| 109 |
+
info['translation'],
|
| 110 |
+
info['scale']
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
# Resize to reference dimensions if needed
|
| 114 |
+
if transformed.shape[:2] != (self.reference_size[1], self.reference_size[0]):
|
| 115 |
+
transformed = cv2.resize(transformed, self.reference_size)
|
| 116 |
+
|
| 117 |
+
# Write video frames
|
| 118 |
+
n_frames = int(info['duration'] * fps)
|
| 119 |
+
for _ in range(n_frames):
|
| 120 |
+
out.write(transformed)
|
| 121 |
+
|
| 122 |
+
finally:
|
| 123 |
+
out.release()
|
| 124 |
+
|
| 125 |
+
# Enhance video quality
|
| 126 |
+
self._improve_video_quality(output_path)
|
| 127 |
+
|
| 128 |
+
def _improve_video_quality(self, video_path):
|
| 129 |
+
import subprocess
|
| 130 |
+
temp_path = video_path + '.temp.mp4'
|
| 131 |
+
|
| 132 |
+
cmd = [
|
| 133 |
+
'ffmpeg', '-i', video_path,
|
| 134 |
+
'-c:v', 'libx264',
|
| 135 |
+
'-preset', 'slow',
|
| 136 |
+
'-crf', '18',
|
| 137 |
+
'-y',
|
| 138 |
+
temp_path
|
| 139 |
+
]
|
| 140 |
+
|
| 141 |
+
subprocess.run(cmd)
|
| 142 |
+
|
| 143 |
+
import os
|
| 144 |
+
os.replace(temp_path, video_path)
|
| 145 |
+
|
| 146 |
+
def main():
|
| 147 |
+
processor = ImageProcessor('tools/i2v_config.yaml')
|
| 148 |
+
processor.create_video('convertd_video.mp4', fps=25)
|
| 149 |
+
|
| 150 |
+
if __name__ == '__main__':
|
| 151 |
+
main()
|
| 152 |
+
|
tools/i2v_config.yaml
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
images:
|
| 2 |
+
# - path: "xxx.jpg" # Image path
|
| 3 |
+
# duration: 4.0 # Display duration (in seconds)
|
| 4 |
+
# # Translation: [x, y] percentage. Positive x is right, positive y is down.
|
| 5 |
+
# # This means the view pans 5% to the right and 2% up over 1 second.
|
| 6 |
+
# translation: [5, -2]
|
| 7 |
+
# # Scale: The final zoom factor. 1.0 is no zoom.
|
| 8 |
+
# # This means the view zooms from 1x to 1.2x over 1 second.
|
| 9 |
+
# scale: 1.2
|
| 10 |
+
- path: "examples/single/ref_image.png"
|
| 11 |
+
duration: 2 # seconds
|
| 12 |
+
translation: [0, 0] # [dx, dy] - pixels per second (approximately)
|
| 13 |
+
scale: 1.0 # Scale factor (1.0 = no change, >1.0 zoom in, <1.0 zoom out)
|
| 14 |
+
- path: "examples/single/ref_image.png"
|
| 15 |
+
duration: 3.0
|
| 16 |
+
translation: [-7, -7]
|
| 17 |
+
scale: 1.0
|