Spaces:
Sleeping
Sleeping
File size: 6,757 Bytes
8496edd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
modeling_methods = """\
## Operations Research
### Programming Theory
#### Linear Programming
- Linear Programming (LP)
- Integer Programming (IP)
- Mixed Integer Programming (MIP)
- Goal Programming (GP)
- Multi-Objective Programming (MOP)
- Multi-level Programming
- Dynamic Programming (DP)
- Network Optimization Models
- Parametric Linear Programming
#### Nonlinear Programming
- Convex Programming
- Quadratic Programming (QP)
- Nonlinear Programming (NLP)
- Semi-Definite Programming (SDP)
- Set Programming
- Non-Smooth Optimization
- Penalty Methods in Nonlinear Optimization
#### Others
- Fuzzy Optimization
- Stochastic Optimization
- Robust Optimization
- Approximation Algorithms
- Cooperative Game Theory
- Metaheuristic Approaches (Simulated Annealing, Genetic Algorithms, etc.)
### Graph Theory
#### Path
- Shortest Path Model (S-T, All-Pairs)
- Dijkstra’s Algorithm
- A* Algorithm
- Bellman-Ford Algorithm
- Eulerian Path Problem
- Hamiltonian Cycle Problem
- Traveling Salesman Problem (TSP)
- Vehicle Routing Problem (VRP)
- K-Shortest Path Problem
- Path Planning Algorithms
#### Tree
- Minimum Spanning Tree (MST)
- Prim’s Algorithm
- Kruskal’s Algorithm
- Huffman Tree
- Steiner Tree Problem
- Binary Search Tree (BST)
- AVL Tree
- K-d Tree
- Quad Tree
- B+ Tree
#### Flow
- Max-Flow Min-Cost Max-Flow Problem
- Ford-Fulkerson Algorithm
- Edmonds-Karp Algorithm
- Minimum-Cost Flow Problem
- Multi-Commodity Flow Problem
- Network Reliability Models
#### Others
- Bipartite Matching Model
- Stable Marriage Problem
- Graph Coloring Problem (Greedy Coloring, Backtracking)
- Vertex Cover Problem
- Set Cover Problem
- Clique Problem
- Independent Set Problem
- Algebraic Representation of Graph (Adjacency Matrix, Laplacian Matrix, Incidence Matrix)
- Spectral Graph Theory Models
### Stochastic Programming Theory
- Stochastic Linear Programming
- Markov Chains and Models
- Markov Decision Process (MDP)
- Queuing Theory (M/M/1, M/G/1, G/G/1 Queues)
- Inventory Theory (Economic Order Quantity, Newsvendor Problem)
- Monte Carlo Simulation
- Reliability Theory
- Decision Trees and Multi-Stage Decision Problems
- Dynamic Stochastic Optimization
## Optimization Methods
### Deterministic Algorithms
- Greedy Algorithm
- Divide & Conquer
- Dynamic Programming
- Backtracking Algorithms
- Local Search Algorithms
- Branch and Bound
### Heuristic Algorithms
- Simulated Annealing (SA)
- Tabu Search
- Genetic Algorithm (GA)
- Particle Swarm Optimization (PSO)
- Ant Colony Optimization (ACO)
- Harmony Search Algorithm
- Differential Evolution
- Memetic Algorithm
- Iterative Deepening Search
### Iterative Algorithms
- Gradient Descent
- Newton's Method
- Coordinate Descent
- Conjugate Gradient Method
- Broyden–Fletcher–Goldfarb–Shanno (BFGS) Method
- Levenberg-Marquardt Algorithm
- Golden-Section Search
- Nelder-Mead Simplex Algorithm
### Constrained Optimization
- Linear Programming (LP) Solvers (Simplex Method, Interior-Point Method)
- Quadratic Programming (QP) Solvers
- Feasible Direction Method
- Projected Gradient Method
- Augmented Lagrangian Methods
- Lagrange Multipliers
- Karush-Kuhn-Tucker Conditions
- KKT Conditions in Nonlinear Optimization
- Primal-Dual Methods
### Solution Techniques
- Branch and Bound Method
- Relaxation Methods
- Penalty Function Methods
- Restriction Method
- Lagrange Relaxation
- Antithesis Optimization
- Subgradient Methods
- Multigrid Methods
---
## Machine Learning Topics
### Classification
- K-Nearest Neighbors (KNN)
- Support Vector Machine (SVM)
- Decision Trees
- Random Forest
- Gradient Boosting Machines (GBM)
- XGBoost, LightGBM, CatBoost
- Logistic Regression
- Naive Bayes
- Linear Discriminant Analysis (LDA)
- Quadratic Discriminant Analysis (QDA)
- Neural Networks (Feedforward, Convolutional, Recurrent)
- Deep Learning (CNN, RNN, LSTM)
### Clustering
- K-Means Algorithm
- K-Means++ Variant
- Expectation-Maximization (EM)
- Self-Organizing Maps (SOM)
- DBSCAN (Density-Based Spatial Clustering)
- Hierarchical Clustering
- Agglomerative and Divisive Clustering
- Spectral Clustering
- Gaussian Mixture Models (GMM)
- Affinity Propagation
- Birch Clustering
### Regression
- Linear Regression
- Ridge Regression
- Lasso Regression
- Elastic Net Regression
- Poisson Regression
- Logistic Regression (for binary classification)
- Polynomial Regression
- Generalized Linear Models (GLM)
- Non-Linear Regression
- Locally Weighted Regression (Loess)
### Dimensionality Reduction
#### Linear
- Principal Component Analysis (PCA)
- Canonical Correlation Analysis (CCA)
- Independent Component Analysis (ICA)
- Singular Value Decomposition (SVD)
#### Non-Linear
- Local Linear Embedding (LLE)
- Laplacian Eigenmaps
- t-Distributed Stochastic Neighbor Embedding (t-SNE)
- Isomap
- Autoencoders
### Ensemble Learning Algorithms
- Bagging Algorithm
- Boosting Algorithm
- Random Forest
- AdaBoost
- Gradient Boosting
- Stacking
- Voting Classifier
- Bootstrap Aggregating
## Prediction Topics
### Discrete Prediction
- Markov Decision Process (MDP)
- Hidden Markov Models (HMM)
- Grey Forecasting
- Bayesian Networks
- Difference Equations
- Kalman Filtering
- Particle Filtering
### Continuous Prediction
#### Time Series Models
- Autoregressive Integrated Moving Average (ARIMA)
- Generalized Autoregressive Conditional Heteroskedasticity (GARCH)
- Exponential Smoothing (Holt-Winters)
- Seasonal Decomposition of Time Series (STL)
- Prophet Model
#### Differential Equation Models
- Ordinary Differential Equations (ODE)
- Stochastic Differential Equations (SDE)
- Infectious Disease Models (SIR, SEIR)
- Population Growth Models
- Lotka-Volterra Models
- Heat Conduction Models
- Predator-Prey Models
- Diffusion Models (e.g., River Pollutant Diffusion)
- Economic Growth Models
- Battle Models (e.g., Lotka-Volterra Models)
## Evaluation Topics
### Scoring Evaluation
- Fuzzy Comprehensive Evaluation
- Grey Evaluation Method
- Analytic Hierarchy Process (AHP)
- Analytic Network Process (ANP)
- Data Envelopment Analysis (DEA)
- Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
- Entropy Weight Method
- Information Entropy Method
- Weighted Sum Method
- Weighted Product Method
- Multi-Criteria Decision Analysis (MCDA)
- PROMETHEE and GAIA
### Statistical Evaluation
#### Correlation Test
- Pearson Correlation Coefficient
- Spearman's Rank Correlation Coefficient
- Kendall’s Tau Coefficient
- Wilcoxon's Signed Rank Test
- Kruskal-Wallis Test
- Mann-Whitney U Test
#### Goodness of Fit Test
- Analysis of Variance (ANOVA)
- Chi-Square Goodness-of-Fit Test
- Kolmogorov-Smirnov Test (KS Test)
- Anderson-Darling Test
- Shapiro-Wilk Test
- Jarque-Bera Test
- Bayesian Information Criterion (BIC)
""" |