File size: 7,485 Bytes
8496edd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from llm.llm import LLM
from prompt.constants import modeling_methods
from input.problem import problem_input
# from input.test_middle_result import problem_str, problem_analysis, selected_models, modeling_solution, modeling_solution, task_descriptions
from agent.problem_analysis import ProblemAnalysis
from agent.method_ranking import MethodRanking
from agent.problem_modeling import ProblemModeling
from agent.task_decompse import TaskDecompose
from agent.task import Task
from agent.create_charts import Chart
from agent.coordinator import Coordinator
from utils.utils import read_json_file, write_json_file, write_text_file, json_to_markdown
from prompt.template import TASK_ANALYSIS_APPEND_PROMPT, TASK_FORMULAS_APPEND_PROMPT, TASK_MODELING_APPEND_PROMPT
# from utils.convert_format import markdown_to_latex
import os
from datetime import datetime
import shutil


def run_batch(problem_path, config, name, dataset_path, output_path):
    # Initialize LLM
    llm = LLM(config['model_name'])
    
    # Get problem input
    problem_str, problem = problem_input(problem_path, llm)
    problem_type = ""
    
    # Initialize paper dictionary
    paper = {'tasks': []}
    paper['problem_background'] = problem['background']
    paper['problem_requirement'] = problem['problem_requirement']

    # Problem analysis
    problem_analysis = ""
    paper['problem_analysis'] = problem_analysis

    # Problem modeling
    modeling_solution = ""

    # Task decomposition
    td = TaskDecompose(llm, coo = False)
    task_descriptions = td.decompose_and_refine(problem_str, problem_analysis, modeling_solution, problem_type, config['tasknum'])

    # Analyze dependency
    with_code = len(problem['dataset_path']) > 0

    if with_code:
        shutil.copytree(dataset_path, os.path.join(output_path,'code'), dirs_exist_ok=True)

    # Process tasks
    task = Task(llm, coo = False)
    mr = MethodRanking(llm)
    chart = Chart(llm)
    for id in range(1, len(task_descriptions)+1):
        code_template = open(os.path.join('data/actor_data/input/code_template','main{}.py'.format(id))).read()
        work_dir = os.path.join(output_path,'code')
        script_name = 'main{}.py'.format(id)

        task_description = task_descriptions[id - 1]
        task_analysis = task.analysis("", task_description)
        description_and_analysis = f'## Task Description\n{task_description}\n\n## Task Analysis\n{task_analysis}'
        top_modeling_methods = mr.top_methods(description_and_analysis, top_k=config['top_method_num'])

        task_formulas = task.formulas("", problem['data_description'], task_description, task_analysis, top_modeling_methods, round=config['task_formulas_round'])
        task_modeling = task.modeling("", problem['data_description'], task_description, task_analysis, task_formulas)
        if with_code:
            task_code, is_pass, execution_result = task.coding(problem['dataset_path'], problem['data_description'], problem['variable_description'], task_description, task_analysis, task_formulas, task_modeling, "", code_template, script_name, work_dir)
            task_result = task.result(task_description, task_analysis, task_formulas, task_modeling, execution_result)
            task_answer = task.answer(task_description, task_analysis, task_formulas, task_modeling, task_result)
            task_dict = {
                'task_description': task_description,
                'task_analysis': task_analysis,
                'preliminary_formulas': task_formulas,
                'mathematical_modeling_process': task_modeling,
                'task_code': task_code,
                'is_pass': is_pass,
                'execution_result': execution_result,
                'solution_interpretation': task_result,
                'subtask_outcome_analysis': task_answer
            }
        else:
            task_result = task.result(task_description, task_analysis, task_formulas, task_modeling)
            task_answer = task.answer(task_description, task_analysis, task_formulas, task_modeling, task_result)
            task_dict = {
                'task_description': task_description,
                'task_analysis': task_analysis,
                'preliminary_formulas': task_formulas,
                'mathematical_modeling_process': task_modeling,
                'solution_interpretation': task_result,
                'subtask_outcome_analysis': task_answer
            }
        charts = chart.create_charts(str(task_dict), config['chart_num'])
        task_dict['charts'] = charts
        paper['tasks'].append(task_dict)
        save_paper(paper, name, output_path)

    print(paper)
    print('Usage:', llm.get_total_usage())
    write_json_file(f'{output_path}/usage/{name}.json', llm.get_total_usage())
    return paper


def save_paper(paper, name, path):
    write_json_file(f'{path}/json/{name}.json', paper)
    markdown_str = json_to_markdown(paper)
    write_text_file(f'{path}/markdown/{name}.md', markdown_str)
    # write_text_file(f'data/actor_data/output/latex/{name}.tex', markdown_to_latex(markdown_str))

def mkdir(path):
    os.mkdir(path)
    os.mkdir(path + '/json')
    os.mkdir(path + '/markdown')
    os.mkdir(path + '/latex')
    os.mkdir(path + '/code')
    os.mkdir(path + '/usage')

if __name__ == "__main__":
    import glob
    # files = glob.glob('data/actor_data/input/problem/2024*')
    files = glob.glob('data/actor_data/input/problem/2024_C*')

    # config_list = [{
    #     'top_method_num': 6,
    #     'problem_analysis_round': 1,
    #     'problem_modeling_round': 1,
    #     'task_formulas_round': 1,
    #     'tasknum': 4,
    #     'chart_num': 3,
    #     'model_name': 'gpt-4'
    #     # 'model_name': 'chatgpt-4o-latest'
    # }, {
    #     'top_method_num': 6,
    #     'problem_analysis_round': 1,
    #     'problem_modeling_round': 1,
    #     'task_formulas_round': 1,
    #     'tasknum': 4,
    #     'chart_num': 3,
    #     'model_name': 'deepseek-reasoner'
    # }, {
    #     'top_method_num': 6,
    #     'problem_analysis_round': 1,
    #     'problem_modeling_round': 1,
    #     'task_formulas_round': 1,
    #     'tasknum': 4,
    #     'chart_num': 3,
    #     'model_name': 'DeepSeek-R1-671B'
    # }][0:]
    config_list = [{
        'top_method_num': 6,
        'problem_analysis_round': 1,
        'problem_modeling_round': 1,
        'task_formulas_round': 1,
        'tasknum': 4,
        'chart_num': 3,
        'model_name': 'gpt-4'
    }][0:]


    for i, config in enumerate(config_list, start=1):
        for file in files:
            try:
                name = file.split('/')[-1].split('.')[0] + '_wo_coo'
                dataset_path = os.path.join('data/actor_data/input/dataset', file.split('/')[-1].split('.')[0])
                output_dir = 'data/actor_data/output'
                if not os.path.exists(output_dir):
                    os.makedirs(output_dir)
                output_path = os.path.join(output_dir, name + '_{}'.format(datetime.now().strftime('%Y%m%d-%H%M%S')))
                if not os.path.exists(output_path):
                    mkdir(output_path)
                print(f'Processing {file}..., config: {config}')
                paper = run_batch(problem_path=file, config=config, name=name, dataset_path=dataset_path, output_path=output_path)
                # save_paper(paper, name)
            except Exception as e:
                raise
                print(f'Error: {e}')
                continue