Spaces:
Sleeping
Sleeping
| from .base_agent import BaseAgent | |
| from prompt.template import PROBLEM_ANALYSIS_PROMPT, PROBLEM_ANALYSIS_CRITIQUE_PROMPT, PROBLEM_ANALYSIS_IMPROVEMENT_PROMPT | |
| class ProblemAnalysis(BaseAgent): | |
| def __init__(self, llm): | |
| super().__init__(llm) | |
| def analysis_actor(self, modeling_problem: str, user_prompt: str=''): | |
| prompt = PROBLEM_ANALYSIS_PROMPT.format(modeling_problem=modeling_problem, user_prompt=user_prompt).strip() | |
| return self.llm.generate(prompt) | |
| def analysis_critic(self, modeling_problem: str, problem_analysis: str): | |
| prompt = PROBLEM_ANALYSIS_CRITIQUE_PROMPT.format(modeling_problem=modeling_problem, problem_analysis=problem_analysis).strip() | |
| return self.llm.generate(prompt) | |
| def analysis_improvement(self, modeling_problem: str, problem_analysis: str, problem_analysis_critique: str, user_prompt: str=''): | |
| prompt = PROBLEM_ANALYSIS_IMPROVEMENT_PROMPT.format(modeling_problem=modeling_problem, problem_analysis=problem_analysis, problem_analysis_critique=problem_analysis_critique, user_prompt=user_prompt).strip() | |
| return self.llm.generate(prompt) | |
| def analysis(self, modeling_problem: str, round: int = 3, user_prompt: str = ''): | |
| problem_analysis = self.analysis_actor(modeling_problem, user_prompt) | |
| for i in range(round): | |
| print(f'Problem Analysis Round {i+1}') | |
| problem_analysis_critique = self.analysis_critic(modeling_problem, problem_analysis) | |
| problem_analysis_improvement = self.analysis_improvement(modeling_problem, problem_analysis, problem_analysis_critique, user_prompt) | |
| problem_analysis = problem_analysis_improvement | |
| return problem_analysis | |