|
|
from llm.llm import LLM |
|
|
from prompt.constants import modeling_methods |
|
|
from input.problem import problem_input |
|
|
|
|
|
from agent.problem_analysis import ProblemAnalysis |
|
|
from agent.method_ranking import MethodRanking |
|
|
from agent.problem_modeling import ProblemModeling |
|
|
from agent.task_decompse import TaskDecompose |
|
|
from agent.task import Task |
|
|
from agent.create_charts import Chart |
|
|
from agent.coordinator import Coordinator |
|
|
from utils.utils import read_json_file, write_json_file, write_text_file, json_to_markdown |
|
|
from prompt.template import TASK_ANALYSIS_APPEND_PROMPT, TASK_FORMULAS_APPEND_PROMPT, TASK_MODELING_APPEND_PROMPT |
|
|
|
|
|
import os |
|
|
from datetime import datetime |
|
|
import shutil |
|
|
import time |
|
|
|
|
|
|
|
|
def run_batch(problem_path, config, name, dataset_path, output_path): |
|
|
|
|
|
llm = LLM(config['model_name']) |
|
|
|
|
|
|
|
|
problem_str, problem = problem_input(problem_path, llm) |
|
|
problem_type = os.path.splitext(os.path.basename(problem_path))[0].split('_')[-1] |
|
|
|
|
|
|
|
|
paper = {'tasks': []} |
|
|
paper['problem_background'] = problem['background'] |
|
|
paper['problem_requirement'] = problem['problem_requirement'] |
|
|
|
|
|
|
|
|
pa = ProblemAnalysis(llm) |
|
|
problem_analysis = pa.analysis(problem_str, round=config['problem_analysis_round']) |
|
|
paper['problem_analysis'] = problem_analysis |
|
|
|
|
|
|
|
|
|
|
|
modeling_methods = "" |
|
|
|
|
|
pm = ProblemModeling(llm) |
|
|
modeling_solution = pm.modeling(problem_str, problem_analysis, modeling_methods, round=config['problem_modeling_round']) |
|
|
|
|
|
|
|
|
td = TaskDecompose(llm) |
|
|
task_descriptions = td.decompose_and_refine(problem_str, problem_analysis, modeling_solution, problem_type, config['tasknum']) |
|
|
|
|
|
|
|
|
with_code = len(problem['dataset_path']) > 0 |
|
|
coordinator = Coordinator(llm) |
|
|
order = coordinator.analyze_dependencies(problem_str, problem_analysis, modeling_solution, task_descriptions, with_code) |
|
|
order = [int(i) for i in order] |
|
|
|
|
|
if with_code: |
|
|
shutil.copytree(dataset_path, os.path.join(output_path,'code'), dirs_exist_ok=True) |
|
|
|
|
|
|
|
|
task = Task(llm) |
|
|
mr = MethodRanking(llm) |
|
|
chart = Chart(llm) |
|
|
for id in order: |
|
|
task_dependency = [int(i) for i in coordinator.DAG[str(id)]] |
|
|
dependent_file_prompt = "" |
|
|
if len(task_dependency) > 0: |
|
|
dependency_prompt = f"""\ |
|
|
This task is Task {id}, which depends on the following tasks: {task_dependency}. The dependencies for this task are analyzed as follows: {coordinator.task_dependency_analysis[id - 1]} |
|
|
""" |
|
|
for task_id in task_dependency: |
|
|
dependency_prompt += f"""\ |
|
|
--- |
|
|
# The Description of Task {task_id}: |
|
|
{coordinator.memory[str(task_id)]['task_description']} |
|
|
# The modeling method for Task {task_id}: |
|
|
{coordinator.memory[str(task_id)]['mathematical_modeling_process']} |
|
|
""" |
|
|
if with_code: |
|
|
dependency_prompt += f"""\ |
|
|
# The structure of code for Task {task_id}: |
|
|
{coordinator.code_memory[str(task_id)]} |
|
|
# The result for Task {task_id}: |
|
|
{coordinator.memory[str(task_id)]['solution_interpretation']} |
|
|
--- |
|
|
""" |
|
|
dependent_file_prompt += f"""\ |
|
|
# The files generated by code for Task {task_id}: |
|
|
{coordinator.code_memory[str(task_id)]} |
|
|
""" |
|
|
coordinator.code_memory[str(task_id)]['file_outputs'] |
|
|
else: |
|
|
dependency_prompt += f"""\ |
|
|
# The result for Task {task_id}: |
|
|
{coordinator.memory[str(task_id)]['solution_interpretation']} |
|
|
--- |
|
|
""" |
|
|
|
|
|
task_analysis_prompt = dependency_prompt + TASK_ANALYSIS_APPEND_PROMPT |
|
|
task_formulas_prompt = dependency_prompt + TASK_FORMULAS_APPEND_PROMPT |
|
|
task_modeling_prompt = dependency_prompt + TASK_MODELING_APPEND_PROMPT |
|
|
else: |
|
|
task_analysis_prompt = "" |
|
|
task_formulas_prompt = "" |
|
|
task_modeling_prompt = "" |
|
|
|
|
|
code_template = open(os.path.join('data/actor_data/input/code_template','main{}.py'.format(id))).read() |
|
|
save_path = os.path.join(output_path,'code/main{}.py'.format(id)) |
|
|
work_dir = os.path.join(output_path,'code') |
|
|
script_name = 'main{}.py'.format(id) |
|
|
|
|
|
task_description = task_descriptions[id - 1] |
|
|
task_analysis = task.analysis(task_analysis_prompt, task_description) |
|
|
description_and_analysis = f'## Task Description\n{task_description}\n\n## Task Analysis\n{task_analysis}' |
|
|
top_modeling_methods = mr.top_methods(description_and_analysis, top_k=config['top_method_num']) |
|
|
|
|
|
task_formulas = task.formulas(task_formulas_prompt, problem['data_description'], task_description, task_analysis, top_modeling_methods, round=config['task_formulas_round']) |
|
|
task_modeling = task.modeling(task_modeling_prompt, problem['data_description'], task_description, task_analysis, task_formulas) |
|
|
if with_code: |
|
|
task_code, is_pass, execution_result = task.coding(problem['dataset_path'], problem['data_description'], problem['variable_description'], task_description, task_analysis, task_formulas, task_modeling, dependent_file_prompt, code_template, script_name, work_dir) |
|
|
code_structure = task.extract_code_structure(id, task_code, save_path) |
|
|
task_result = task.result(task_description, task_analysis, task_formulas, task_modeling, execution_result) |
|
|
task_answer = task.answer(task_description, task_analysis, task_formulas, task_modeling, task_result) |
|
|
task_dict = { |
|
|
'task_description': task_description, |
|
|
'task_analysis': task_analysis, |
|
|
'preliminary_formulas': task_formulas, |
|
|
'mathematical_modeling_process': task_modeling, |
|
|
'task_code': task_code, |
|
|
'is_pass': is_pass, |
|
|
'execution_result': execution_result, |
|
|
'solution_interpretation': task_result, |
|
|
'subtask_outcome_analysis': task_answer |
|
|
} |
|
|
coordinator.code_memory[str(id)] = code_structure |
|
|
else: |
|
|
task_result = task.result(task_description, task_analysis, task_formulas, task_modeling) |
|
|
task_answer = task.answer(task_description, task_analysis, task_formulas, task_modeling, task_result) |
|
|
task_dict = { |
|
|
'task_description': task_description, |
|
|
'task_analysis': task_analysis, |
|
|
'preliminary_formulas': task_formulas, |
|
|
'mathematical_modeling_process': task_modeling, |
|
|
'solution_interpretation': task_result, |
|
|
'subtask_outcome_analysis': task_answer |
|
|
} |
|
|
coordinator.memory[str(id)] = task_dict |
|
|
charts = chart.create_charts(str(task_dict), config['chart_num']) |
|
|
task_dict['charts'] = charts |
|
|
paper['tasks'].append(task_dict) |
|
|
save_paper(paper, name, output_path) |
|
|
|
|
|
print(paper) |
|
|
print('Usage:', llm.get_total_usage()) |
|
|
write_json_file(f'{output_path}/usage/{name}.json', llm.get_total_usage()) |
|
|
return paper |
|
|
|
|
|
|
|
|
def save_paper(paper, name, path): |
|
|
write_json_file(f'{path}/json/{name}.json', paper) |
|
|
markdown_str = json_to_markdown(paper) |
|
|
write_text_file(f'{path}/markdown/{name}.md', markdown_str) |
|
|
|
|
|
|
|
|
def mkdir(path): |
|
|
os.mkdir(path) |
|
|
os.mkdir(path + '/json') |
|
|
os.mkdir(path + '/markdown') |
|
|
os.mkdir(path + '/latex') |
|
|
os.mkdir(path + '/code') |
|
|
os.mkdir(path + '/usage') |
|
|
|
|
|
if __name__ == "__main__": |
|
|
import glob |
|
|
file_name_list = [] |
|
|
for year in range(2025, 2026): |
|
|
if year == 2025: |
|
|
letters = "CDEF" |
|
|
else: |
|
|
letters = "ABCDEF" |
|
|
|
|
|
for letter in letters: |
|
|
file_name_list.append(f'data/actor_data/input/problem/{year}_{letter}*') |
|
|
|
|
|
files = [] |
|
|
for pattern in file_name_list: |
|
|
files.extend(glob.glob(pattern)) |
|
|
|
|
|
config_list = [{ |
|
|
'top_method_num': 6, |
|
|
'problem_analysis_round': 1, |
|
|
'problem_modeling_round': 1, |
|
|
'task_formulas_round': 1, |
|
|
'tasknum': 4, |
|
|
'chart_num': 3, |
|
|
'model_name': 'gpt-4o', |
|
|
"method_name": "MM-Agent-gpt-4o-v3-probelm-modleing" |
|
|
|
|
|
}] |
|
|
|
|
|
for i, config in enumerate(config_list, start=1): |
|
|
for file in files: |
|
|
try: |
|
|
name = file.split('/')[-1].split('.')[0] |
|
|
dataset_path = os.path.join('data/actor_data/input/dataset', file.split('/')[-1].split('.')[0]) |
|
|
output_dir = 'data/actor_data/exps/{}'.format(config["method_name"]) |
|
|
if not os.path.exists(output_dir): |
|
|
os.makedirs(output_dir) |
|
|
output_path = os.path.join(output_dir, name + '_{}'.format(datetime.now().strftime('%Y%m%d-%H%M%S'))) |
|
|
if not os.path.exists(output_path): |
|
|
mkdir(output_path) |
|
|
print(f'Processing {file}..., config: {config}') |
|
|
start = time.time() |
|
|
paper = run_batch(problem_path=file, config=config, name=name, dataset_path=dataset_path, output_path=output_path) |
|
|
end = time.time() |
|
|
with open(output_path + '/usage/runtime.txt', 'w') as f: |
|
|
f.write("{:.2f}s".format(end - start)) |
|
|
|
|
|
except Exception as e: |
|
|
raise |
|
|
print(f'Error: {e}') |
|
|
continue |
|
|
|