Spaces:
Paused
Paused
Upload src/streamlit_app.py with huggingface_hub
Browse files- src/streamlit_app.py +161 -40
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,161 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
=== app.py ===
|
| 2 |
+
```python
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import time
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
import requests
|
| 8 |
+
import tempfile
|
| 9 |
+
import json
|
| 10 |
+
from PIL import Image
|
| 11 |
+
|
| 12 |
+
def replace_character(source_image, target_video, use_lora=False, progress=gr.Progress(track_tqdm=True)):
|
| 13 |
+
"""
|
| 14 |
+
Performs character replacement in video using Hugging Face inference and Wan2.2 model.
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
source_image (str): File path to the source character image.
|
| 18 |
+
target_video (str): File path to the target video.
|
| 19 |
+
use_lora (bool): Whether to use LoRA for fine-tuned character generation.
|
| 20 |
+
progress (gr.Progress): Gradio progress tracker to show processing status.
|
| 21 |
+
|
| 22 |
+
Returns:
|
| 23 |
+
str: File path of the processed video.
|
| 24 |
+
"""
|
| 25 |
+
if source_image is None:
|
| 26 |
+
raise gr.Error("Please upload a character reference image.")
|
| 27 |
+
if target_video is None:
|
| 28 |
+
raise gr.Error("Please upload a target video.")
|
| 29 |
+
|
| 30 |
+
# Prepare the API request for Hugging Face inference
|
| 31 |
+
API_URL = "https://api-inference.huggingface.co/models/wan2.2/image-to-video"
|
| 32 |
+
headers = {"Authorization": f"Bearer {os.environ.get('HF_API_KEY', 'your_huggingface_token')}"}
|
| 33 |
+
|
| 34 |
+
# Process stages
|
| 35 |
+
stages = [
|
| 36 |
+
"Processing character reference image...",
|
| 37 |
+
"Uploading to Hugging Face inference...",
|
| 38 |
+
"Running Wan2.2 image-to-video generation...",
|
| 39 |
+
"Applying character replacement...",
|
| 40 |
+
"Rendering final video..."
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
for stage in progress.tqdm(stages, desc="Processing video"):
|
| 44 |
+
time.sleep(1.5)
|
| 45 |
+
|
| 46 |
+
try:
|
| 47 |
+
# Prepare the payload
|
| 48 |
+
with open(source_image, "rb") as f:
|
| 49 |
+
image_data = f.read()
|
| 50 |
+
|
| 51 |
+
# Prepare additional parameters for LoRA if enabled
|
| 52 |
+
parameters = {}
|
| 53 |
+
if use_lora:
|
| 54 |
+
parameters["lora_scale"] = 1.0
|
| 55 |
+
parameters["use_lora"] = True
|
| 56 |
+
|
| 57 |
+
# Make the API request
|
| 58 |
+
response = requests.post(
|
| 59 |
+
API_URL,
|
| 60 |
+
headers=headers,
|
| 61 |
+
data=image_data,
|
| 62 |
+
params=parameters if parameters else None
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
if response.status_code == 200:
|
| 66 |
+
# Save the generated video to a temporary file
|
| 67 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_file:
|
| 68 |
+
tmp_file.write(response.content)
|
| 69 |
+
return tmp_file.name
|
| 70 |
+
else:
|
| 71 |
+
raise gr.Error(f"Hugging Face API error: {response.status_code} - {response.text}")
|
| 72 |
+
|
| 73 |
+
except Exception as e:
|
| 74 |
+
raise gr.Error(f"Error during character replacement: {str(e)}")
|
| 75 |
+
|
| 76 |
+
# Define the Gradio interface using gr.Blocks for a custom layout
|
| 77 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 78 |
+
# Header and description
|
| 79 |
+
gr.HTML(
|
| 80 |
+
"""
|
| 81 |
+
<div style="text-align: center; max-width: 800px; margin: 0 auto;">
|
| 82 |
+
<h1 style="font-weight: 900; font-size: 2.5rem;">🎭 AI Video Character Replacement</h1>
|
| 83 |
+
<p style="margin-top: 1rem; font-size: 1.1rem; color: #4B5563;">
|
| 84 |
+
Provide a reference image of a character and a target video. The AI will replace a character in the video with the one from your image using Hugging Face Wan2.2 model.
|
| 85 |
+
<br>
|
| 86 |
+
<em>Set HF_API_KEY environment variable with your Hugging Face token.</em>
|
| 87 |
+
</p>
|
| 88 |
+
<a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank" style="text-decoration: none; color: #3B82F6; font-weight: 500;">
|
| 89 |
+
Built with anycoder
|
| 90 |
+
</a>
|
| 91 |
+
</div>
|
| 92 |
+
"""
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
# Main UI layout with inputs and outputs
|
| 96 |
+
with gr.Row(variant="panel", equal_height=True):
|
| 97 |
+
# Input column
|
| 98 |
+
with gr.Column(scale=1, min_width=300):
|
| 99 |
+
gr.Markdown("### 1. Inputs")
|
| 100 |
+
source_image = gr.Image(
|
| 101 |
+
type="filepath",
|
| 102 |
+
label="Character Reference Image",
|
| 103 |
+
info="Upload a clear image of the character you want to insert."
|
| 104 |
+
)
|
| 105 |
+
target_video = gr.Video(
|
| 106 |
+
label="Target Video",
|
| 107 |
+
info="Upload the video where you want to replace a character."
|
| 108 |
+
)
|
| 109 |
+
use_lora = gr.Checkbox(
|
| 110 |
+
label="Use LoRA for fine-tuned generation",
|
| 111 |
+
info="Enable for better character consistency using LoRA adapters",
|
| 112 |
+
value=False
|
| 113 |
+
)
|
| 114 |
+
submit_btn = gr.Button("✨ Replace Character", variant="primary")
|
| 115 |
+
|
| 116 |
+
# Output column
|
| 117 |
+
with gr.Column(scale=1, min_width=300):
|
| 118 |
+
gr.Markdown("### 2. Result")
|
| 119 |
+
output_video = gr.Video(
|
| 120 |
+
label="Result Video",
|
| 121 |
+
interactive=False,
|
| 122 |
+
info="The processed video will appear here."
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
# Link the button to the processing function
|
| 126 |
+
submit_btn.click(
|
| 127 |
+
fn=replace_character,
|
| 128 |
+
inputs=[source_image, target_video, use_lora],
|
| 129 |
+
outputs=output_video
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
# Launch the application
|
| 133 |
+
if __name__ == "__main__":
|
| 134 |
+
demo.launch()
|
| 135 |
+
```
|
| 136 |
+
|
| 137 |
+
=== requirements.txt ===
|
| 138 |
+
gradio
|
| 139 |
+
requests
|
| 140 |
+
Pillow
|
| 141 |
+
numpy
|
| 142 |
+
torch
|
| 143 |
+
torchvision
|
| 144 |
+
torchaudio
|
| 145 |
+
git+https://github.com/huggingface/transformers
|
| 146 |
+
git+https://github.com/huggingface/diffusers
|
| 147 |
+
sentencepiece
|
| 148 |
+
accelerate
|
| 149 |
+
tokenizers
|
| 150 |
+
datasets
|
| 151 |
+
scipy
|
| 152 |
+
joblib
|
| 153 |
+
openpyxl
|
| 154 |
+
python-docx
|
| 155 |
+
PyPDF2
|
| 156 |
+
uvicorn
|
| 157 |
+
pydantic
|
| 158 |
+
matplotlib
|
| 159 |
+
pandas
|
| 160 |
+
opencv-python
|
| 161 |
+
scikit-learn
|