Spaces:
Sleeping
Sleeping
File size: 12,180 Bytes
7473c82 d908ebb 7473c82 ff87814 7473c82 ff87814 7473c82 ff87814 7473c82 ff87814 7473c82 ff87814 7473c82 ff87814 7473c82 ff87814 7473c82 ff87814 7473c82 ff87814 7473c82 ff87814 7473c82 ff87814 7473c82 ff87814 7473c82 ff87814 7473c82 ff87814 7473c82 ff87814 7473c82 ff87814 7473c82 ff87814 7473c82 d908ebb 7473c82 d908ebb c6ee0be 7473c82 c6ee0be 7436eb8 c6ee0be 7473c82 c6ee0be e3f936a c6ee0be d908ebb c6ee0be 7436eb8 c6ee0be d908ebb c6ee0be d908ebb c6ee0be d908ebb c6ee0be d908ebb c6ee0be d908ebb c6ee0be d908ebb c6ee0be d908ebb c6ee0be d908ebb c6ee0be d908ebb c6ee0be d908ebb c6ee0be d908ebb c6ee0be d908ebb c6ee0be d908ebb c6ee0be d908ebb c6ee0be d908ebb c6ee0be d908ebb c6ee0be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import gradio as gr
import os
from datetime import datetime
from llm_handler import LLMHandler
from memory_manager import MemoryManager
from tool_executor import ToolExecutor
from character_learner import CharacterLearner
from audio_handler import AudioHandler
class ConversationalAgent:
def __init__(self, model_name: str | None = None):
# Allow dynamic model override from UI; fall back to env / default.
self.llm_handler = LLMHandler(model_override=model_name)
self.memory_manager = MemoryManager()
self.tool_executor = ToolExecutor()
self.character_learner = CharacterLearner(self.memory_manager)
self.audio_handler = AudioHandler()
self.user_id = os.getenv("USER_NAME", "User")
self.memory_manager.initialize_user_profile(self.user_id)
def process_message(self, message, history, use_voice=False):
if not message or not message.strip():
return history, ""
try:
self.memory_manager.store_conversation(self.user_id, message, "user")
learned_traits = self.character_learner.extract_and_learn(self.user_id, message, "user")
relevant_memories = self.memory_manager.get_relevant_memories(self.user_id, message, limit=5)
user_profile = self.memory_manager.get_user_profile(self.user_id)
context = self._build_context(message, relevant_memories, user_profile)
tools_needed = self._should_use_tools(message)
tool_results = ""
if tools_needed:
tool_results = self.tool_executor.execute_tools(message)
if tool_results:
context += f"\n\nTool Results:\n{tool_results}"
full_response = ""
for chunk in self.llm_handler.generate_streaming(context):
full_response += chunk
self.memory_manager.store_conversation(self.user_id, full_response, "assistant")
self.character_learner.extract_and_learn(self.user_id, full_response, "assistant")
audio_output = None
if use_voice and full_response:
audio_output = self.audio_handler.text_to_speech(full_response)
final_history = history + [[message, full_response]]
yield final_history, "", audio_output
except Exception as e:
print(f"Error processing message: {str(e)}")
error_history = history + [[message, f"I apologize, but I encountered an error: {str(e)}"]]
yield error_history, "", None
def process_voice_input(self, audio, history):
if audio is None:
return history, ""
try:
text = self.audio_handler.speech_to_text(audio)
if text:
return history, text
else:
return history, ""
except Exception as e:
print(f"Error processing voice input: {str(e)}")
return history, ""
def _build_context(self, message, memories, user_profile):
context_parts = []
system_prompt = os.getenv("SYSTEM_PROMPT", "You are a helpful, friendly AI assistant.")
context_parts.append(f"System: {system_prompt}")
if user_profile:
profile_info = f"\n\nUser Profile for {self.user_id}:"
if user_profile.get('learned_traits'):
traits = __import__('json').loads(user_profile['learned_traits'])
if traits.get('interests'):
profile_info += f"\nInterests: {', '.join(traits['interests'][:5])}"
if traits.get('background'):
profile_info += f"\nBackground: {traits['background']}"
context_parts.append(profile_info)
if memories:
context_parts.append("\n\nRelevant past context:")
for mem in memories[:3]:
role = mem['role'].capitalize()
msg = mem['message'][:200]
context_parts.append(f"{role}: {msg}")
context_parts.append(f"\n\nCurrent User Message: {message}")
context_parts.append("\nAssistant:")
return "\n".join(context_parts)
def _should_use_tools(self, message):
tool_keywords = ['search', 'find', 'google', 'what is', 'who is', 'calculate', 'compute', 'run', 'execute', 'code', 'add task', 'create task', 'workflow', 'automate']
message_lower = message.lower()
return any(keyword in message_lower for keyword in tool_keywords)
def get_memory_stats(self):
profile = self.memory_manager.get_user_profile(self.user_id)
if not profile:
return "No profile data yet."
stats = [f"**User:** {self.user_id}", f"**Profile Created:** {profile.get('created_at', 'Unknown')}"]
if profile.get('learned_traits'):
traits = __import__('json').loads(profile['learned_traits'])
stats.append("\n**Learned Information:**")
if traits.get('interests'):
stats.append(f"- Interests ({len(traits['interests'])}): {', '.join(traits['interests'][:5])}")
if traits.get('background'):
stats.append(f"- Background: {traits['background']}")
if traits.get('communication_style'):
stats.append(f"- Communication Style: {traits['communication_style']}")
if traits.get('expertise'):
stats.append(f"- Expertise Areas: {', '.join(traits['expertise'][:3])}")
stats.append(f"\n**Total Conversations:** {self.memory_manager.get_conversation_count(self.user_id)}")
return "\n".join(stats)
def create_interface():
"""Create and configure the Gradio interface with LLM selection."""
# Top-level stateful agent; will be re-created when model changes.
with gr.Blocks(title="Personal AI Assistant", theme=gr.themes.Soft()) as demo:
# Global state: selected model and agent instance
model_state = gr.State(os.getenv("PREFERRED_MODEL", "google/gemini-2.0-flash-exp"))
agent_state = gr.State(ConversationalAgent(model_state.value))
gr.Markdown(
"""
# π€ Personal AI Assistant
Your intelligent companion that learns about you over time and helps with various tasks.
**Features:**
- π¬ Natural conversation with memory
- π€ Voice input and output
- π§ Learns your preferences and interests
- π§ Can search the web, execute code, and trigger workflows
"""
)
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="Conversation",
height=500,
show_label=True,
avatar_images=(None, "π€"),
type="messages"
)
with gr.Row():
with gr.Column(scale=4):
msg_input = gr.Textbox(
label="Type your message...",
placeholder="Ask me anything...",
lines=2,
show_label=False
)
with gr.Column(scale=1):
audio_input = gr.Audio(
sources=["microphone"],
type="filepath",
label="π€ Voice",
show_label=True
)
with gr.Row():
with gr.Column(scale=4):
submit_btn = gr.Button("Send π¬", variant="primary")
voice_btn = gr.Button("Send with Voice π")
with gr.Column(scale=1):
clear_btn = gr.Button("Clear ποΈ")
with gr.Column(scale=1):
audio_output = gr.Audio(
label="Voice Response",
autoplay=True,
type="numpy"
)
# Settings / model selection + memory stats
with gr.Tab("Settings"):
gr.Markdown("### π§ LLM Settings")
with gr.Row():
llm_model = gr.Dropdown(
label="Select LLM model (via OpenRouter)",
choices=[
"google/gemini-2.0-flash-exp",
"anthropic/claude-3.5-sonnet",
"anthropic/claude-3.5-haiku",
"openai/gpt-4.1-mini",
],
value=os.getenv("PREFERRED_MODEL", "google/gemini-2.0-flash-exp"),
)
apply_model_btn = gr.Button("Apply Model")
with gr.Tab("Memory Stats"):
gr.Markdown("### π Memory Stats")
stats_display = gr.Markdown("Click 'Refresh Stats' to view")
refresh_btn = gr.Button("Refresh Stats π")
# --- Helper to (re)build agent when model changes ---
def build_agent(model_name):
try:
return ConversationalAgent(model_name)
except Exception as e:
# Surface configuration errors (e.g., missing OPENROUTER_API_KEY)
print(f"Error initializing ConversationalAgent with model '{model_name}': {e}")
# Fallback to default without crashing UI
return ConversationalAgent()
# --- Stats updater uses current agent instance ---
def update_stats(agent_obj):
return agent_obj.get_memory_stats()
# --- Core chat handlers using agent_state ---
def respond(message, history, agent_obj):
return agent_obj.process_message(message, history, use_voice=False)
def respond_with_voice(message, history, agent_obj):
return agent_obj.process_message(message, history, use_voice=True)
def process_audio(audio, history, agent_obj):
return agent_obj.process_voice_input(audio, history)
def clear_history():
return [], ""
# --- Wire chat events to use current agent_state ---
msg_input.submit(
respond,
inputs=[msg_input, chatbot, agent_state],
outputs=[chatbot, msg_input, audio_output],
)
submit_btn.click(
respond,
inputs=[msg_input, chatbot, agent_state],
outputs=[chatbot, msg_input, audio_output],
)
voice_btn.click(
respond_with_voice,
inputs=[msg_input, chatbot, agent_state],
outputs=[chatbot, msg_input, audio_output],
)
audio_input.change(
process_audio,
inputs=[audio_input, chatbot, agent_state],
outputs=[chatbot, msg_input],
)
clear_btn.click(
clear_history,
outputs=[chatbot, msg_input],
)
# Model apply: update model_state + agent_state
def apply_model(selected_model, _old_agent):
new_agent = build_agent(selected_model)
return selected_model, new_agent
apply_model_btn.click(
apply_model,
inputs=[llm_model, agent_state],
outputs=[model_state, agent_state],
)
# Stats button uses current agent_state
refresh_btn.click(
update_stats,
inputs=[agent_state],
outputs=[stats_display],
)
# Load stats on startup
demo.load(
update_stats,
inputs=[agent_state],
outputs=[stats_display],
)
return demo
# ... (rest of your file is unchanged)
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
) |