File size: 3,780 Bytes
c28f1e7
edd277f
c28f1e7
e638507
edd277f
c28f1e7
edd277f
 
 
e638507
edd277f
 
c28f1e7
edd277f
 
 
c28f1e7
edd277f
 
e638507
edd277f
 
 
c28f1e7
edd277f
 
 
c28f1e7
edd277f
c28f1e7
edd277f
 
 
c28f1e7
edd277f
 
 
 
c28f1e7
edd277f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c28f1e7
edd277f
 
 
c28f1e7
edd277f
 
 
 
 
c28f1e7
edd277f
 
 
 
 
 
c28f1e7
edd277f
 
 
c28f1e7
edd277f
c28f1e7
edd277f
 
c28f1e7
 
edd277f
c28f1e7
edd277f
 
c28f1e7
 
 
 
edd277f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import gradio as gr
from supabase import create_client, Client
import os
import requests
import json

# ======================================================================
# --- SETUP AND CONFIGURATION ---
# ======================================================================

# Retrieve Supabase credentials from environment variables (Hugging Face Space secrets)
# This is a secure way to store your API keys and other sensitive information.
try:
    supabase_url = os.environ.get("SUPABASE_URL")
    supabase_key = os.environ.get("SUPABASE_KEY")
    supabase: Client = create_client(supabase_url, supabase_key)
except Exception as e:
    print(f"Error initializing Supabase client: {e}")
    supabase = None

# Set the endpoint for your voice generation engine
# Make sure to replace this with the actual URL from your RunPod instance.
CHATTTERBOX_ENDPOINT = os.environ.get("CHATTERBOX_ENDPOINT")

# ======================================================================
# --- CORE LOGIC ---
# ======================================================================

def process_voice_command(audio):
    """
    This function handles the core logic of the voice assistant.
    It takes an audio file, transcribes it, gets a response from a language model,
    saves the interaction to Supabase, and generates an audio response.
    """
    
    # Placeholder for the actual transcription logic
    # You will replace this with a call to your speech-to-text model.
    transcribed_text = "Placeholder: Your transcribed text will appear here."

    # Placeholder for the response from the language model
    # You will replace this with a call to your Gemma model.
    model_response = "Placeholder: This is Gemma's generated response."
    
    # Save the chat to Supabase
    if supabase:
        try:
            # We are using a dummy table name 'chats', make sure this matches your Supabase table.
            supabase.table("chats").insert({
                "user_input": transcribed_text,
                "model_response": model_response
            }).execute()
            print("Chat successfully saved to Supabase! ๐Ÿ’พ")
        except Exception as e:
            print(f"Error saving chat to Supabase: {e}")
    else:
        print("Supabase client not initialized. Skipping database save.")

    # Placeholder for the voice generation logic using Chatterbox
    # You will replace this with an actual API call to your Chatterbox endpoint.
    if CHATTTERBOX_ENDPOINT:
        try:
            # Example API call structure
            payload = {"text": model_response}
            headers = {"Content-Type": "application/json"}
            requests.post(CHATTTERBOX_ENDPOINT, data=json.dumps(payload), headers=headers)
            print("Response sent to Chatterbox endpoint! ๐ŸŽ™๏ธ")
        except Exception as e:
            print(f"Error sending data to Chatterbox: {e}")
    else:
        print("Chatterbox endpoint not set. Skipping voice generation.")
    
    # Return the transcription and the response to the Gradio interface.
    return transcribed_text, model_response

# ======================================================================
# --- GRADIO INTERFACE ---
# ======================================================================

# Create the Gradio interface
iface = gr.Interface(
    fn=process_voice_command,
    inputs=gr.Audio(sources=["microphone"], label="Speak your command here..."),
    outputs=[
        gr.Textbox(label="Transcription"),
        gr.Textbox(label="AI's Response")
    ],
    title="My Personal Voice Assistant",
    description="Speak into the microphone and get a response from the AI, with chats saved to your Supabase database."
)

# Launch the Gradio app
if __name__ == "__main__":
    iface.launch()