Spaces:
Sleeping
Sleeping
| import json | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| from gtts import gTTS | |
| from diffusers import StableDiffusionPipeline | |
| import gradio as gr | |
| def load_fairytale(file_obj): | |
| data = json.loads(file_obj.read().decode("utf-8")) # read & decode | |
| return data['title'], data['content'] | |
| def generate_grandma_voice(text): | |
| grandma_text = f"에구구 얘야, 잘 들어보렴. {text.strip()} ... 옛날 옛적 이야기란다~" | |
| tts = gTTS(text=grandma_text, lang='ko') | |
| audio_path = "grandma_voice.mp3" | |
| tts.save(audio_path) | |
| return audio_path | |
| emotion_tokenizer = AutoTokenizer.from_pretrained("monologg/koelectra-base-discriminator") | |
| emotion_model = AutoModelForSequenceClassification.from_pretrained("monologg/koelectra-base-discriminator") | |
| def classify_emotion(text): | |
| inputs = emotion_tokenizer(text, return_tensors="pt", truncation=True) | |
| with torch.no_grad(): | |
| outputs = emotion_model(**inputs) | |
| probs = torch.nn.functional.softmax(outputs.logits, dim=1) | |
| label = torch.argmax(probs).item() | |
| emotions_ko = ["기쁨", "슬픔", "분노", "불안", "중립"] | |
| emotions_en = ["joy", "sadness", "anger", "anxiety", "neutral"] | |
| return emotions_en[label], emotions_ko[label] | |
| stable_pipe = StableDiffusionPipeline.from_pretrained( | |
| "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16 | |
| ) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| stable_pipe = stable_pipe.to(device) | |
| def generate_emotion_image(emotion_en): | |
| prompt = f"A dreamy digital painting that represents the feeling of {emotion_en}" | |
| image = stable_pipe(prompt).images[0] | |
| image_path = f"{emotion_en}_image.png" | |
| image.save(image_path) | |
| return image_path | |
| def run_all(fairytale_file, child_feeling_text): | |
| title, content = load_fairytale(fairytale_file) | |
| audio_path = generate_grandma_voice(content[:300]) | |
| emotion_en, emotion_ko = classify_emotion(child_feeling_text) | |
| image_path = generate_emotion_image(emotion_en) | |
| return title, audio_path, emotion_ko, image_path | |
| demo = gr.Interface( | |
| fn=run_all, | |
| inputs=[ | |
| gr.File(label="동화 JSON 파일 업로드"), | |
| gr.Textbox(label="아이의 감상문") | |
| ], | |
| outputs=[ | |
| gr.Text(label="동화 제목"), | |
| gr.Audio(label="할머니 목소리"), | |
| gr.Text(label="감정 분석 결과 (한국어)"), | |
| gr.Image(label="감정 표현 이미지") | |
| ], | |
| title="AI 할머니가 읽어주는 감성 동화책", | |
| description="동화를 업로드하면 할머니가 읽어주고, 아이 감상문에 맞춰 감정 이미지를 생성합니다." | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |