Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,661 Bytes
6373ff8 ccc80c2 8d7d2d7 ccc80c2 6373ff8 b9ea7a6 3fc0dd0 b9ea7a6 9f830e1 6373ff8 8385a65 f93e467 8d7d2d7 8d65475 2c50a6c f93e467 a209f33 9f830e1 097272d 7ae7fc2 2c50a6c 16c2491 3fc0dd0 8d7d2d7 6373ff8 16c2491 df50fe7 df9f472 55e274c be3d458 a9da525 078123a b9ea7a6 078123a 12b22a2 b9ea7a6 f93e467 ccc80c2 6373ff8 ccc80c2 6373ff8 422bc49 6373ff8 422bc49 6373ff8 422bc49 078123a 2c50a6c b093e55 9401d3b b093e55 2c50a6c 8d7d2d7 a209f33 f4a33cd 078123a b5c1016 b8cbb2a 078123a 6840742 078123a 9e4bb4a f93e467 078123a 1241278 078123a c0d646a 9a9c4b1 078123a cdeb4dc 078123a cdeb4dc 078123a cdeb4dc 078123a cdeb4dc 078123a cdeb4dc 078123a 0293750 078123a 0293750 078123a b5c1016 16c2491 8e5b8b6 74f4467 078123a 74f4467 078123a 74f4467 b5c1016 078123a b8cbb2a 8e5b8b6 078123a b8cbb2a f93e467 6605b2c ccc80c2 16c2491 ccc80c2 0911836 16c2491 6222acc ccc80c2 6373ff8 8d7d2d7 b5c1016 b9ea7a6 6222acc 6373ff8 6222acc 422bc49 6222acc b9ea7a6 422bc49 6222acc f6c2def 6222acc f93e467 6605b2c eb74c8f f93e467 2c50a6c b9ea7a6 f93e467 b9ea7a6 f93e467 6605b2c f93e467 ccc80c2 7bddac9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import os
import gradio as gr
import numpy as np
import random
import spaces
import torch
import json
import logging
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
from huggingface_hub import login
from diffusers.utils import load_image
#from lora_loading_patch import load_lora_into_transformer
import time
from datetime import datetime
from io import BytesIO
import torch.nn.functional as F
from PIL import Image, ImageFilter
import time
import boto3
from io import BytesIO
import re
import json
import random
import string
from diffusers import FluxPipeline
from huggingface_hub import hf_hub_download
from diffusers.quantizers import PipelineQuantizationConfig
from diffusers import (FluxPriorReduxPipeline, FluxInpaintPipeline, FluxFillPipeline, FluxKontextPipeline, FluxPipeline)
# Login Hugging Face Hub
HF_TOKEN = os.environ.get("HF_TOKEN")
login(token=HF_TOKEN)
import diffusers
# init
dtype = torch.bfloat16
device = "cuda:0"
base_model = "black-forest-labs/FLUX.1-Krea-dev"
# pipeline_quant_config = PipelineQuantizationConfig(
# quant_backend="bitsandbytes_4bit",
# quant_kwargs={"load_in_4bit": True, "bnb_4bit_quant_type": "nf4", "bnb_4bit_compute_dtype": torch.bfloat16},
# components_to_quantize=["transformer", "text_encoder_2"],
# )
txt2img_pipe = FluxKontextPipeline.from_pretrained(base_model, torch_dtype=dtype)
txt2img_pipe = txt2img_pipe.to(device)
MAX_SEED = 2**32 - 1
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time))
print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}")
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time))
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def safe_trim_for_clip(text: str, max_words: int = 77) -> str:
# 简单按词裁,不破坏主 prompt。你也可以做更智能的关键词抽取。
tokens = re.split(r"\s+", text.strip())
if len(tokens) <= max_words:
return text
return " ".join(tokens[:max_words])
def upload_image_to_r2(image, account_id, access_key, secret_key, bucket_name):
with calculateDuration("Upload images"):
connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com"
s3 = boto3.client(
's3',
endpoint_url=connectionUrl,
region_name='auto',
aws_access_key_id=access_key,
aws_secret_access_key=secret_key
)
current_time = datetime.now().strftime("%Y/%m/%d/%H/%M/%S")
image_file = f"generated_images/{current_time}/{random.randint(0, MAX_SEED)}.png"
buffer = BytesIO()
image.save(buffer, "PNG")
buffer.seek(0)
s3.upload_fileobj(buffer, bucket_name, image_file)
print("upload finish", image_file)
# start to generate thumbnail
thumbnail = image.copy()
thumbnail_width = 256
aspect_ratio = image.height / image.width
thumbnail_height = int(thumbnail_width * aspect_ratio)
thumbnail = thumbnail.resize((thumbnail_width, thumbnail_height), Image.LANCZOS)
# Generate the thumbnail image filename
thumbnail_file = image_file.replace(".png", "_thumbnail.png")
# Save thumbnail to buffer and upload
thumbnail_buffer = BytesIO()
thumbnail.save(thumbnail_buffer, "PNG")
thumbnail_buffer.seek(0)
s3.upload_fileobj(thumbnail_buffer, bucket_name, thumbnail_file)
print("upload thumbnail finish", thumbnail_file)
return image_file
def generate_random_4_digit_string():
return ''.join(random.choices(string.digits, k=4))
@spaces.GPU(duration=120)
def run_lora(
prompt,
image_url,
lora_strings_json,
image_strength,
cfg_scale,
steps,
randomize_seed,
seed,
width,
height,
upload_to_r2,
account_id,
access_key,
secret_key,
bucket,
progress=gr.Progress(track_tqdm=True)
):
print("run_lora", prompt, lora_strings_json, cfg_scale, steps, width, height)
gr.Info("Starting process")
pipe = txt2img_pipe
device = pipe.device
print(device)
# ========== Seed ==========
if randomize_seed:
with calculateDuration("Set random seed"):
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# ========== LoRA ==========
gr.Info("Start to load LoRA ...")
with calculateDuration("Unloading LoRA"):
try:
pipe.unload_lora_weights()
except Exception as _:
# 某些版本上未加载时调用可能抛异常,忽略
pass
adapter_names = []
adapter_weights = []
if lora_strings_json:
try:
lora_configs = json.loads(lora_strings_json)
except Exception as _:
lora_configs = None
gr.Warning("Parse lora config json failed")
print("parse lora config json failed")
if lora_configs:
with calculateDuration("Loading LoRA weights"):
for lora_info in lora_configs:
repo = lora_info.get("repo")
weights = lora_info.get("weights")
# 优先使用用户提供的 adapter_name;没有则随机
adapter_name = lora_info.get("adapter_name") or f"adp_{generate_random_4_digit_string()}"
weight = float(lora_info.get("adapter_weight", 1.0))
if not (repo and weights):
print(f"skip invalid lora entry: {lora_info}")
continue
try:
weight_path = hf_hub_download(repo_id=repo, filename=weights)
# 关键修复:prefix=None,避免仅在 text_encoder 查找
pipe.load_lora_weights(weight_path, adapter_name=adapter_name, prefix=None)
adapter_names.append(adapter_name)
adapter_weights.append(weight)
except Exception as e:
print(f"load lora error for {repo}/{weights}: {e}")
if adapter_names:
pipe.set_adapters(adapter_names, adapter_weights=adapter_weights)
# 可选:融合后推理更快,但无法动态调整权重
# pipe.fuse_lora(adapter_names=adapter_names)
try:
active = pipe.get_active_adapters() if hasattr(pipe, "get_active_adapters") else []
print("Active adapters:", active)
except Exception as e:
print("Active adapters query failed:", e)
lora_layer_count = 0
for name, module in pipe.transformer.named_modules():
attrs = dir(module)
if any(a.startswith("lora_") for a in attrs) or "lora" in module.__class__.__name__.lower():
lora_layer_count += 1
print(f"[DEBUG] transformer LoRA layers: {lora_layer_count}")
# 若层数为 0,给出直观警告
if lora_layer_count == 0:
gr.Warning("LoRA seems not injected (0 layers on transformer). Check whether the LoRA is trained for FLUX and `prefix=None` is set.")
pipe.enable_vae_slicing()
clip_side_prompt = safe_trim_for_clip(prompt, max_words=77)
init_image = None
error_message = ""
try:
gr.Info("Start to generate images ...")
joint_attention_kwargs = {"scale": 1}
image = pipe(
prompt=prompt,
num_inference_steps=int(steps),
guidance_scale=float(cfg_scale),
width=int(width),
height=int(height),
max_sequence_length=512,
generator=generator,
joint_attention_kwargs=joint_attention_kwargs
).images[0]
except Exception as e:
error_message = str(e)
gr.Error(error_message)
print("fatal error", e)
image = None
result = {"status": "failed", "message": error_message} if image is None else {"status": "success", "message": "Image generated but not uploaded"}
if image is not None and upload_to_r2:
try:
url = upload_image_to_r2(image, account_id, access_key, secret_key, bucket)
result = {"status": "success", "message": "upload image success", "url": url}
except Exception as e:
err = f"Upload failed: {e}"
gr.Warning(err)
print(err)
result = {"status": "success", "message": "generated but upload failed"}
gr.Info("Completed!")
progress(100, "Completed!")
return json.dumps(result)
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("flux-dev-multi-lora")
with gr.Row():
with gr.Column():
prompt = gr.Text(label="Prompt", placeholder="Enter prompt", lines=10)
lora_strings_json = gr.Text(label="LoRA Configs (JSON List String)", placeholder='[{"repo": "lora_repo1", "weights": "weights1", "adapter_name": "adapter_name1", "adapter_weight": 1}, {"repo": "lora_repo2", "weights": "weights2", "adapter_name": "adapter_name2", "adapter_weight": 1}]', lines=5)
image_url = gr.Text(label="Image url", placeholder="Enter image url to enable image to image model", lines=1)
run_button = gr.Button("Run", scale=0)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False)
account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id")
access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here")
secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here")
bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here")
with gr.Column():
json_text = gr.Text(label="Result JSON")
gr.Markdown("**Disclaimer:**")
gr.Markdown(
"This demo is only for research purpose. This space owner cannot be held responsible for the generation of NSFW (Not Safe For Work) content through the use of this demo. Users are solely responsible for any content they create, and it is their obligation to ensure that it adheres to appropriate and ethical standards. This space owner provides the tools, but the responsibility for their use lies with the individual user."
)
inputs = [
prompt,
image_url,
lora_strings_json,
image_strength,
cfg_scale,
steps,
randomize_seed,
seed,
width,
height,
upload_to_r2,
account_id,
access_key,
secret_key,
bucket
]
outputs = [json_text]
run_button.click(
fn=run_lora,
inputs=inputs,
outputs=outputs
)
try:
demo.queue().launch()
except:
print("demo exception ...") |