File size: 36,942 Bytes
20706fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 |
import os
import base64
import io
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from dash import Dash, html, dcc, Input, Output, State, callback_context
import dash_bootstrap_components as dbc
from typing import Optional
from dotenv import load_dotenv
from pydantic import Field, SecretStr
import numpy as np
# Langchain imports - simplified without embeddings
from langchain_community.vectorstores import FAISS
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.schema import Document
from langchain_core.prompts import PromptTemplate
# Load environment variables
load_dotenv()
# Simplified - no OpenRouter for now
AI_AVAILABLE = False
openrouter_model = None
# Initialize Dash app
app = Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
server = app.server
# Global variables
vector_store = None
# Built-in datasets
def create_builtin_datasets():
"""Create built-in sample datasets"""
datasets = {}
# Gapminder dataset
np.random.seed(42)
countries = ['USA', 'China', 'India', 'Germany', 'UK', 'France', 'Japan', 'Brazil', 'Canada', 'Australia']
years = list(range(2000, 2021))
gapminder_data = []
for country in countries:
base_gdp = np.random.uniform(20000, 80000)
base_life_exp = np.random.uniform(70, 85)
base_pop = np.random.uniform(10000000, 100000000)
for year in years:
gapminder_data.append({
'country': country,
'year': year,
'gdpPercap': base_gdp * (1 + np.random.uniform(-0.1, 0.15)) * ((year-2000)*0.02 + 1),
'lifeExp': base_life_exp + np.random.uniform(-2, 3) + (year-2000)*0.1,
'pop': base_pop * (1.01 + np.random.uniform(-0.005, 0.015))**(year-2000),
'continent': 'Asia' if country in ['China', 'India', 'Japan'] else 'Europe' if country in ['Germany', 'UK', 'France'] else 'Americas' if country in ['USA', 'Brazil', 'Canada'] else 'Oceania'
})
datasets['Gapminder'] = pd.DataFrame(gapminder_data)
# Iris dataset
from sklearn.datasets import load_iris
try:
iris = load_iris()
datasets['Iris'] = pd.DataFrame(iris.data, columns=iris.feature_names)
datasets['Iris']['species'] = [iris.target_names[i] for i in iris.target]
except ImportError:
# Fallback if sklearn not available
iris_data = {
'sepal_length': np.random.normal(5.8, 0.8, 150),
'sepal_width': np.random.normal(3.0, 0.4, 150),
'petal_length': np.random.normal(3.8, 1.8, 150),
'petal_width': np.random.normal(1.2, 0.8, 150),
'species': ['setosa']*50 + ['versicolor']*50 + ['virginica']*50
}
datasets['Iris'] = pd.DataFrame(iris_data)
# Tips dataset
tips_data = {
'total_bill': np.random.uniform(10, 50, 200),
'tip': np.random.uniform(1, 10, 200),
'sex': np.random.choice(['Male', 'Female'], 200),
'smoker': np.random.choice(['Yes', 'No'], 200),
'day': np.random.choice(['Thur', 'Fri', 'Sat', 'Sun'], 200),
'time': np.random.choice(['Lunch', 'Dinner'], 200),
'size': np.random.choice([1, 2, 3, 4, 5, 6], 200)
}
datasets['Tips'] = pd.DataFrame(tips_data)
# Stock Data
dates = pd.date_range('2020-01-01', '2023-12-31', freq='D')
stock_price = 100
stock_data = []
for date in dates:
daily_return = np.random.normal(0.001, 0.02)
stock_price *= (1 + daily_return)
stock_data.append({
'date': date,
'price': stock_price,
'volume': np.random.randint(1000000, 5000000),
'high': stock_price * (1 + abs(np.random.normal(0, 0.01))),
'low': stock_price * (1 - abs(np.random.normal(0, 0.01))),
'open': stock_price * (1 + np.random.normal(0, 0.005))
})
datasets['Stock Data'] = pd.DataFrame(stock_data)
# Wind Data
hours = list(range(24))
wind_data = []
for month in range(1, 13):
for day in range(1, 29):
for hour in hours:
wind_data.append({
'month': month,
'day': day,
'hour': hour,
'wind_speed': abs(np.random.normal(15, 8)) + 5*np.sin(hour/24*2*np.pi),
'temperature': np.random.normal(20, 15) + 10*np.cos(month/12*2*np.pi),
'humidity': np.random.uniform(30, 90),
'pressure': np.random.normal(1013, 20)
})
datasets['Wind Data'] = pd.DataFrame(wind_data)
return datasets
# Initialize built-in datasets
builtin_datasets = create_builtin_datasets()
# App layout
app.layout = dbc.Container([
dbc.Row([
dbc.Col([
html.H1("π€ AI-Powered Data Analytics", className="text-center mb-4"),
html.P("Upload data, ask questions, and get AI-powered insights!",
className="text-center text-muted"),
html.Hr(),
], width=12)
]),
# Tabbed interface
dbc.Tabs([
# Tab 1: Dataset Management
dbc.Tab(label="π Dataset Management", tab_id="dataset-management", children=[
dbc.Row([
dbc.Col([
dbc.Card([
dbc.CardBody([
html.H4("Load Built-in Dataset", className="card-title"),
dcc.Dropdown(
id="builtin-choice",
options=[
{"label": "Gapminder", "value": "Gapminder"},
{"label": "Iris", "value": "Iris"},
{"label": "Tips", "value": "Tips"},
{"label": "Stock Data", "value": "Stock Data"},
{"label": "Wind Data", "value": "Wind Data"}
],
value="Gapminder",
className="mb-2"
),
dbc.Button("Load Dataset", id="load-builtin-btn", color="primary", className="mb-3"),
html.Hr(),
html.H4("Upload Custom Dataset", className="card-title"),
dcc.Upload(
id='file-upload',
children=html.Div([
'Drag and Drop or ',
html.A('Select CSV/Excel Files')
]),
style={
'width': '100%',
'height': '60px',
'lineHeight': '60px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin': '10px'
},
multiple=False,
accept='.csv,.xlsx,.xls'
),
dbc.Input(
id="custom-name",
placeholder="Dataset Name (optional)",
type="text",
className="mb-2"
),
dbc.Button("Upload", id="upload-btn", color="primary", className="mb-3"),
html.Hr(),
html.H4("Active Datasets", className="card-title"),
dcc.Dropdown(
id="dataset-selector",
options=[{"label": "Gapminder", "value": "Gapminder"}],
value="Gapminder",
className="mb-2"
),
html.Hr(),
html.Div(id="status-msg", children=[
dbc.Alert("Ready to load data", color="info")
]),
html.Div(id="data-info")
])
])
], width=4),
dbc.Col([
dbc.Card([
dbc.CardBody([
html.H4("Data Preview (First 10 rows)", className="card-title"),
html.Div(id="data-preview", className="mb-4"),
html.H4("Quick Analytics", className="card-title"),
html.Div(id="auto-analytics")
])
])
], width=8)
], className="mt-4")
]),
# Tab 2: AI Assistant
dbc.Tab(label="π€ AI Assistant", tab_id="ai-assistant", children=[
dbc.Row([
dbc.Col([
dbc.Card([
dbc.CardBody([
html.H4("π€ AI Assistant", className="card-title"),
html.Div(id="ai-dataset-info", className="mb-3", children=[
dbc.Alert("No dataset loaded. Please load a dataset in the Dataset Management tab first.",
color="warning", className="mb-3")
]),
dbc.InputGroup([
dbc.Input(
id="ai-question",
placeholder="Ask questions about your data...",
type="text",
style={"fontSize": "14px"}
),
dbc.Button(
"Ask AI",
id="ask-button",
color="primary",
n_clicks=0
)
]),
html.Div(id="ai-response", className="mt-3")
])
])
], width=12)
], className="mt-4")
]),
# Tab 3: Visualizations
dbc.Tab(label="π Visualizations", tab_id="visualizations", children=[
dbc.Row([
dbc.Col([
dbc.Card([
dbc.CardBody([
html.H4("π Visualizations", className="card-title"),
# Chart controls
dbc.Row([
dbc.Col([
html.Label("Chart Type:", className="form-label"),
dcc.Dropdown(
id='chart-type',
options=[
{'label': 'Scatter Plot', 'value': 'scatter'},
{'label': 'Line Chart', 'value': 'line'},
{'label': 'Bar Chart', 'value': 'bar'},
{'label': 'Histogram', 'value': 'histogram'},
{'label': 'Box Plot', 'value': 'box'},
{'label': 'Heatmap', 'value': 'heatmap'},
{'label': 'Pie Chart', 'value': 'pie'}
],
value='scatter',
className="mb-2"
)
], width=6),
dbc.Col([
html.Label("Color By:", className="form-label"),
dcc.Dropdown(
id='color-column',
placeholder="Select column (optional)",
className="mb-2"
)
], width=6)
]),
dbc.Row([
dbc.Col([
html.Label("X-Axis:", className="form-label"),
dcc.Dropdown(
id='x-column',
placeholder="Select X column"
)
], width=6),
dbc.Col([
html.Label("Y-Axis:", className="form-label"),
dcc.Dropdown(
id='y-column',
placeholder="Select Y column"
)
], width=6)
], className="mb-3"),
dcc.Graph(id='main-graph', style={'height': '500px'}),
])
])
], width=12)
], className="mt-4")
]),
# Tab 4: Data Explorer
dbc.Tab(label="π Data Explorer", tab_id="data-explorer", children=[
dbc.Row([
dbc.Col([
dbc.Card([
dbc.CardBody([
html.H4("π Data Explorer", className="card-title"),
html.Div(id='data-table')
])
])
], width=12)
], className="mt-4")
])
], id="main-tabs", active_tab="dataset-management"),
# Store components
dcc.Store(id='stored-data'),
dcc.Store(id='data-context'),
dcc.Store(id='dataset-registry', data={"Gapminder": "builtin"}),
dcc.Store(id='current-dataset-name', data="Gapminder")
], fluid=True)
def create_vector_store(df):
"""Simplified - just return True for now"""
return True
# Import AI assistant module
from ai_assistant import get_ai_response
def create_auto_analytics(df):
"""Create automatic analytics display"""
analytics_components = []
# Summary Statistics
numeric_cols = df.select_dtypes(include=['number']).columns
if len(numeric_cols) > 0:
stats = df[numeric_cols].describe()
analytics_components.extend([
html.H6("π Summary Statistics", className="mt-2"),
dbc.Table.from_dataframe(
stats.reset_index().round(2),
size='sm',
striped=True,
hover=True
)
])
# Missing Data Analysis
missing_data = df.isnull().sum()
missing_data = missing_data[missing_data > 0]
if not missing_data.empty:
analytics_components.extend([
html.H6("β οΈ Missing Data", className="mt-3"),
dbc.Alert([
html.Pre(missing_data.to_string())
], color="warning")
])
else:
analytics_components.extend([
html.H6("β
Data Quality", className="mt-3"),
dbc.Alert("No missing values found!", color="success")
])
# Data Types Analysis
dtype_info = df.dtypes.value_counts()
analytics_components.extend([
html.H6("π Data Types", className="mt-3"),
dbc.Alert([
html.P(f"π Numeric columns: {len(df.select_dtypes(include=['number']).columns)}"),
html.P(f"π Text columns: {len(df.select_dtypes(include=['object']).columns)}"),
html.P(f"π
DateTime columns: {len(df.select_dtypes(include=['datetime64']).columns)}"),
html.P(f"π’ Boolean columns: {len(df.select_dtypes(include=['bool']).columns)}")
], color="light")
])
# Correlation Analysis for numeric columns
if len(numeric_cols) > 1:
corr_matrix = df[numeric_cols].corr()
# Find highest correlations
corr_pairs = []
for i in range(len(corr_matrix.columns)):
for j in range(i+1, len(corr_matrix.columns)):
corr_val = corr_matrix.iloc[i, j]
if abs(corr_val) > 0.5: # Only show strong correlations
corr_pairs.append((corr_matrix.columns[i], corr_matrix.columns[j], corr_val))
if corr_pairs:
analytics_components.extend([
html.H6("π Strong Correlations (>0.5)", className="mt-3"),
dbc.Alert([
html.P(f"{pair[0]} β {pair[1]}: {pair[2]:.3f}") for pair in corr_pairs[:5] # Show top 5
], color="info")
])
return analytics_components
def parse_contents(contents, filename):
"""Parse uploaded file contents"""
content_type, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
try:
if 'csv' in filename:
df = pd.read_csv(io.StringIO(decoded.decode('utf-8')))
elif 'xls' in filename:
df = pd.read_excel(io.BytesIO(decoded))
else:
return None, "Unsupported file type"
return df, None
except Exception as e:
return None, f"Error processing file: {str(e)}"
# Dataset management callbacks
@app.callback(
[Output('stored-data', 'data'),
Output('status-msg', 'children'),
Output('data-preview', 'children'),
Output('data-info', 'children'),
Output('auto-analytics', 'children'),
Output('x-column', 'options'),
Output('y-column', 'options'),
Output('color-column', 'options'),
Output('x-column', 'value'),
Output('y-column', 'value'),
Output('dataset-registry', 'data'),
Output('dataset-selector', 'options'),
Output('current-dataset-name', 'data')],
[Input('load-builtin-btn', 'n_clicks'),
Input('file-upload', 'contents'),
Input('dataset-selector', 'value')],
[State('builtin-choice', 'value'),
State('file-upload', 'filename'),
State('custom-name', 'value'),
State('dataset-registry', 'data')]
)
def manage_datasets(builtin_clicks, file_contents, selected_dataset, builtin_choice, filename, custom_name, registry):
"""Handle dataset loading and switching"""
ctx = callback_context
# Initialize defaults
registry = registry or {"Gapminder": "builtin"}
if not ctx.triggered:
# Initial load - load Gapminder dataset
df = builtin_datasets["Gapminder"]
dataset_name = "Gapminder"
# Create vector store for AI
vector_success = create_vector_store(df)
# Create data table preview
table = dbc.Table.from_dataframe(
df.head(10),
striped=True,
bordered=True,
hover=True,
size='sm'
)
ai_status = "π€ AI Ready" if vector_success else "β οΈ AI Limited"
status_msg = dbc.Alert(f"β
Gapminder dataset loaded! {ai_status}", color="success")
data_info = dbc.Alert([
html.H6("Dataset Information:"),
html.P(f"Shape: {df.shape[0]} rows Γ {df.shape[1]} columns"),
html.P(f"Columns: {', '.join(df.columns.tolist())}"),
html.P(f"Data types: {len(df.select_dtypes(include=['number']).columns)} numeric, {len(df.select_dtypes(include=['object']).columns)} categorical")
], color="light")
# Create automatic analytics
auto_analytics = create_auto_analytics(df)
# Create column options for dropdowns
all_columns = [{'label': col, 'value': col} for col in df.columns]
numeric_columns = [{'label': col, 'value': col} for col in df.select_dtypes(include=['number']).columns]
# Set default values - prefer numeric columns for x and y
default_x = numeric_columns[0]['value'] if numeric_columns else all_columns[0]['value'] if all_columns else None
default_y = numeric_columns[1]['value'] if len(numeric_columns) > 1 else (numeric_columns[0]['value'] if numeric_columns else (all_columns[1]['value'] if len(all_columns) > 1 else None))
selector_options = [{"label": name, "value": name} for name in registry.keys()]
return df.to_dict('records'), status_msg, table, data_info, auto_analytics, all_columns, all_columns, all_columns, default_x, default_y, registry, selector_options, dataset_name
trigger_id = ctx.triggered[0]['prop_id'].split('.')[0]
if trigger_id == 'load-builtin-btn' and builtin_clicks:
# Load built-in dataset
if builtin_choice in builtin_datasets:
df = builtin_datasets[builtin_choice]
registry[builtin_choice] = "builtin"
# Create vector store for AI
vector_success = create_vector_store(df)
# Create data table preview
table = dbc.Table.from_dataframe(
df.head(10),
striped=True,
bordered=True,
hover=True,
size='sm'
)
ai_status = "π€ AI Ready" if vector_success else "β οΈ AI Limited"
status_msg = dbc.Alert(f"β
{builtin_choice} dataset loaded! {ai_status}", color="success")
data_info = dbc.Alert([
html.H6(f"{builtin_choice} Dataset Information:"),
html.P(f"Shape: {df.shape[0]} rows Γ {df.shape[1]} columns"),
html.P(f"Columns: {', '.join(df.columns.tolist())}"),
html.P(f"Data types: {len(df.select_dtypes(include=['number']).columns)} numeric, {len(df.select_dtypes(include=['object']).columns)} categorical")
], color="light")
# Create automatic analytics
auto_analytics = create_auto_analytics(df)
# Create column options for dropdowns
all_columns = [{'label': col, 'value': col} for col in df.columns]
numeric_columns = [{'label': col, 'value': col} for col in df.select_dtypes(include=['number']).columns]
# Set default values - prefer numeric columns for x and y
default_x = numeric_columns[0]['value'] if numeric_columns else all_columns[0]['value'] if all_columns else None
default_y = numeric_columns[1]['value'] if len(numeric_columns) > 1 else (numeric_columns[0]['value'] if numeric_columns else (all_columns[1]['value'] if len(all_columns) > 1 else None))
selector_options = [{"label": name, "value": name} for name in registry.keys()]
return df.to_dict('records'), status_msg, table, data_info, auto_analytics, all_columns, all_columns, all_columns, default_x, default_y, registry, selector_options, builtin_choice
elif trigger_id == 'file-upload' and file_contents:
# Upload custom dataset
df, error = parse_contents(file_contents, filename)
if error:
status_msg = dbc.Alert(error, color="danger")
selector_options = [{"label": name, "value": name} for name in registry.keys()]
return None, status_msg, "", "", "", [], [], [], None, None, registry, selector_options, None
# Determine dataset name
dataset_name = custom_name if custom_name else filename.split('.')[0]
registry[dataset_name] = "custom"
# Create vector store for AI
vector_success = create_vector_store(df)
# Create data table preview
table = dbc.Table.from_dataframe(
df.head(10),
striped=True,
bordered=True,
hover=True,
size='sm'
)
ai_status = "π€ AI Ready" if vector_success else "β οΈ AI Limited"
status_msg = dbc.Alert(f"β
{dataset_name} uploaded successfully! {ai_status}", color="success")
data_info = dbc.Alert([
html.H6(f"{dataset_name} Dataset Information:"),
html.P(f"Shape: {df.shape[0]} rows Γ {df.shape[1]} columns"),
html.P(f"Columns: {', '.join(df.columns.tolist())}"),
html.P(f"Data types: {len(df.select_dtypes(include=['number']).columns)} numeric, {len(df.select_dtypes(include=['object']).columns)} categorical")
], color="light")
# Create automatic analytics
auto_analytics = create_auto_analytics(df)
# Create column options for dropdowns
all_columns = [{'label': col, 'value': col} for col in df.columns]
numeric_columns = [{'label': col, 'value': col} for col in df.select_dtypes(include=['number']).columns]
# Set default values - prefer numeric columns for x and y
default_x = numeric_columns[0]['value'] if numeric_columns else all_columns[0]['value'] if all_columns else None
default_y = numeric_columns[1]['value'] if len(numeric_columns) > 1 else (numeric_columns[0]['value'] if numeric_columns else (all_columns[1]['value'] if len(all_columns) > 1 else None))
selector_options = [{"label": name, "value": name} for name in registry.keys()]
return df.to_dict('records'), status_msg, table, data_info, auto_analytics, all_columns, all_columns, all_columns, default_x, default_y, registry, selector_options, dataset_name
elif trigger_id == 'dataset-selector' and selected_dataset:
# Switch between datasets
if selected_dataset in registry:
if registry[selected_dataset] == "builtin" and selected_dataset in builtin_datasets:
df = builtin_datasets[selected_dataset]
else:
# For custom datasets, we would need to store them persistently
# For now, just reload builtin if available
if selected_dataset in builtin_datasets:
df = builtin_datasets[selected_dataset]
else:
# Fallback to Gapminder if dataset not found
df = builtin_datasets["Gapminder"]
selected_dataset = "Gapminder"
# Create vector store for AI
vector_success = create_vector_store(df)
# Create data table preview
table = dbc.Table.from_dataframe(
df.head(10),
striped=True,
bordered=True,
hover=True,
size='sm'
)
ai_status = "π€ AI Ready" if vector_success else "β οΈ AI Limited"
status_msg = dbc.Alert(f"β
Switched to {selected_dataset} dataset! {ai_status}", color="success")
data_info = dbc.Alert([
html.H6(f"{selected_dataset} Dataset Information:"),
html.P(f"Shape: {df.shape[0]} rows Γ {df.shape[1]} columns"),
html.P(f"Columns: {', '.join(df.columns.tolist())}"),
html.P(f"Data types: {len(df.select_dtypes(include=['number']).columns)} numeric, {len(df.select_dtypes(include=['object']).columns)} categorical")
], color="light")
# Create automatic analytics
auto_analytics = create_auto_analytics(df)
# Create column options for dropdowns
all_columns = [{'label': col, 'value': col} for col in df.columns]
numeric_columns = [{'label': col, 'value': col} for col in df.select_dtypes(include=['number']).columns]
# Set default values - prefer numeric columns for x and y
default_x = numeric_columns[0]['value'] if numeric_columns else all_columns[0]['value'] if all_columns else None
default_y = numeric_columns[1]['value'] if len(numeric_columns) > 1 else (numeric_columns[0]['value'] if numeric_columns else (all_columns[1]['value'] if len(all_columns) > 1 else None))
selector_options = [{"label": name, "value": name} for name in registry.keys()]
return df.to_dict('records'), status_msg, table, data_info, auto_analytics, all_columns, all_columns, all_columns, default_x, default_y, registry, selector_options, selected_dataset
# Default fallback
selector_options = [{"label": name, "value": name} for name in registry.keys()]
return None, "", "", "", "", [], [], [], None, None, registry, selector_options, None
# Updated callback for data table (now shared across tabs)
@app.callback(
Output('data-table', 'children'),
[Input('stored-data', 'data')]
)
def update_data_table(data):
"""Update data table for data explorer tab"""
if not data:
return html.P("No data loaded", className="text-muted")
df = pd.DataFrame(data)
return dbc.Table.from_dataframe(
df.head(20),
striped=True,
bordered=True,
hover=True,
size='sm',
responsive=True
)
# Callback to update AI assistant tab with current dataset info
@app.callback(
Output('ai-dataset-info', 'children'),
[Input('stored-data', 'data'),
Input('current-dataset-name', 'data')]
)
def update_ai_dataset_info(data, dataset_name):
"""Update AI assistant tab with current dataset information"""
if not data or not dataset_name:
return dbc.Alert("No dataset loaded. Please load a dataset in the Dataset Management tab first.",
color="warning", className="mb-3")
df = pd.DataFrame(data)
return dbc.Alert([
html.H6(f"π Current Dataset: {dataset_name}"),
html.P(f"Shape: {df.shape[0]:,} rows Γ {df.shape[1]} columns"),
html.P(f"Columns: {', '.join(df.columns.tolist()[:5])}{'...' if len(df.columns) > 5 else ''}"),
html.P(f"Data types: {len(df.select_dtypes(include=['number']).columns)} numeric, {len(df.select_dtypes(include=['object']).columns)} categorical"),
html.Small("β¨ AI is ready to answer questions about this data!", className="text-muted")
], color="success", className="mb-3")
@app.callback(
Output('ai-response', 'children'),
[Input('ask-button', 'n_clicks')],
[State('ai-question', 'value'),
State('stored-data', 'data'),
State('current-dataset-name', 'data')]
)
def handle_ai_question(n_clicks, question, data, dataset_name):
"""Handle AI question"""
if not n_clicks or not question or not data:
return ""
if not dataset_name:
return dbc.Alert("Please load a dataset first in the Dataset Management tab.", color="warning")
df = pd.DataFrame(data)
response = get_ai_response(question, df)
return dbc.Alert(
dcc.Markdown(response),
color="info"
)
@app.callback(
Output('main-graph', 'figure'),
[Input('stored-data', 'data'),
Input('chart-type', 'value'),
Input('x-column', 'value'),
Input('y-column', 'value'),
Input('color-column', 'value')]
)
def update_main_graph(data, chart_type, x_col, y_col, color_col):
"""Update main visualization based on user selections"""
if not data:
fig = go.Figure()
fig.add_annotation(text="Upload data to see visualizations",
x=0.5, y=0.5, showarrow=False,
font=dict(size=16, color="gray"))
fig.update_layout(template="plotly_white")
return fig
df = pd.DataFrame(data)
# Handle cases where columns aren't selected yet
if not x_col and not y_col:
fig = go.Figure()
fig.add_annotation(text="Select columns to create visualization",
x=0.5, y=0.5, showarrow=False,
font=dict(size=16, color="gray"))
fig.update_layout(template="plotly_white")
return fig
try:
# Create visualization based on chart type
if chart_type == 'scatter':
if x_col and y_col:
fig = px.scatter(df, x=x_col, y=y_col, color=color_col,
title=f"Scatter Plot: {y_col} vs {x_col}")
else:
fig = go.Figure()
fig.add_annotation(text="Select both X and Y columns for scatter plot",
x=0.5, y=0.5, showarrow=False)
elif chart_type == 'line':
if x_col and y_col:
fig = px.line(df, x=x_col, y=y_col, color=color_col,
title=f"Line Chart: {y_col} vs {x_col}")
else:
fig = go.Figure()
fig.add_annotation(text="Select both X and Y columns for line chart",
x=0.5, y=0.5, showarrow=False)
elif chart_type == 'bar':
if x_col and y_col:
fig = px.bar(df, x=x_col, y=y_col, color=color_col,
title=f"Bar Chart: {y_col} by {x_col}")
elif x_col:
fig = px.bar(df[x_col].value_counts().reset_index(),
x='index', y=x_col,
title=f"Value Counts: {x_col}")
else:
fig = go.Figure()
fig.add_annotation(text="Select at least X column for bar chart",
x=0.5, y=0.5, showarrow=False)
elif chart_type == 'histogram':
if x_col:
fig = px.histogram(df, x=x_col, color=color_col,
title=f"Histogram: {x_col}")
else:
fig = go.Figure()
fig.add_annotation(text="Select X column for histogram",
x=0.5, y=0.5, showarrow=False)
elif chart_type == 'box':
if y_col:
fig = px.box(df, x=color_col, y=y_col,
title=f"Box Plot: {y_col}" + (f" by {color_col}" if color_col else ""))
elif x_col:
fig = px.box(df, y=x_col,
title=f"Box Plot: {x_col}")
else:
fig = go.Figure()
fig.add_annotation(text="Select a column for box plot",
x=0.5, y=0.5, showarrow=False)
elif chart_type == 'heatmap':
numeric_cols = df.select_dtypes(include=['number']).columns
if len(numeric_cols) > 1:
corr_matrix = df[numeric_cols].corr()
fig = px.imshow(corr_matrix,
text_auto=True,
aspect="auto",
title="Correlation Heatmap",
color_continuous_scale='RdBu_r')
else:
fig = go.Figure()
fig.add_annotation(text="Need at least 2 numeric columns for heatmap",
x=0.5, y=0.5, showarrow=False)
elif chart_type == 'pie':
if x_col:
value_counts = df[x_col].value_counts()
fig = px.pie(values=value_counts.values,
names=value_counts.index,
title=f"Pie Chart: {x_col}")
else:
fig = go.Figure()
fig.add_annotation(text="Select X column for pie chart",
x=0.5, y=0.5, showarrow=False)
else:
fig = go.Figure()
fig.add_annotation(text="Select a chart type",
x=0.5, y=0.5, showarrow=False)
fig.update_layout(template="plotly_white", height=500)
return fig
except Exception as e:
fig = go.Figure()
fig.add_annotation(text=f"Error creating chart: {str(e)}",
x=0.5, y=0.5, showarrow=False,
font=dict(color="red"))
fig.update_layout(template="plotly_white")
return fig
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860, debug=False) |