Spaces:
Runtime error
Runtime error
| import json | |
| import os | |
| import time | |
| import gradio as gr | |
| import requests | |
| from demo.log import logger | |
| from demo.util import download_svgs, upload_np_2_oss, download_images | |
| API_KEY = os.getenv("API_KEY_GENERATION") | |
| def convert_bool_to_str(value): | |
| if value: | |
| return "True" | |
| else: | |
| return "False" | |
| def call_generation(input_path, | |
| preprocess, | |
| simplify, | |
| optimize, | |
| mode, | |
| subsample_ratio, | |
| speckle_removal, | |
| sorting_method, | |
| sorting_order, | |
| use_gpu): | |
| ## generate image name based on time stamp | |
| time_str = time.strftime("%Y%m%d%H%M%S", time.localtime()) | |
| img_name = f"upload_{time_str}.png" | |
| svg_name = f"result_{time_str}" | |
| BATCH_SIZE = 1 | |
| if simplify: | |
| BATCH_SIZE += 1 | |
| if optimize: | |
| BATCH_SIZE += 1 | |
| img_url = upload_np_2_oss(input_path, name=img_name) | |
| simplify = convert_bool_to_str(simplify) | |
| optimize = convert_bool_to_str(optimize) | |
| speckle_removal = convert_bool_to_str(speckle_removal) | |
| use_gpu = convert_bool_to_str(use_gpu) | |
| headers = { | |
| "Content-Type": "application/json", | |
| "Accept": "application/json", | |
| "Authorization": f"Bearer {API_KEY}", | |
| "X-DashScope-Async": "enable", | |
| } | |
| data = { | |
| "model": "pre-vectorize_anything-2333", | |
| "input": { | |
| "base_image_url": img_url | |
| }, | |
| "parameters":{ | |
| "preprocess": preprocess, | |
| "mode": mode, | |
| "simplify": simplify, | |
| "optimize": optimize, | |
| "sorting_method": sorting_method, | |
| "sorting_order": sorting_order, | |
| "subsample_ratio": subsample_ratio, | |
| "speckle_removal": speckle_removal, | |
| "use_GPU": use_gpu | |
| } | |
| } | |
| url_create_task = 'https://poc-dashscope.aliyuncs.com/api/v1/services/vision/image-process/process' | |
| all_res_ = [] | |
| REPEAT = 1 | |
| for _ in range(REPEAT): | |
| try: | |
| res_ = requests.post(url_create_task, data=json.dumps(data), headers=headers, timeout=60) | |
| print(json.dumps(data)) | |
| all_res_.append(res_) | |
| except requests.Timeout: | |
| # back off and retry | |
| raise gr.Error("网络波动,请求失败,请再次尝试") | |
| all_image_data = [] | |
| for res_ in all_res_: | |
| respose_code = res_.status_code | |
| if 200 == respose_code: | |
| res = json.loads(res_.content.decode()) | |
| request_id = res['request_id'] | |
| task_id = res['output']['task_id'] | |
| logger.info(f"task_id: {task_id}: Create Vectorization I2V request success. Params: {data}") | |
| # 异步查询 | |
| is_running = True | |
| while is_running: | |
| # url_query = f'https://dashscope.aliyuncs.com/api/v1/tasks/{task_id}' | |
| url_query = f'https://poc-dashscope.aliyuncs.com/api/v1/tasks/{task_id}' | |
| try: | |
| res_ = requests.post(url_query, headers=headers, timeout=60) | |
| except requests.Timeout: | |
| # back off and retry | |
| raise gr.Error("网络波动,请求失败,请再次尝试") | |
| respose_code = res_.status_code | |
| if 200 == respose_code: | |
| res = json.loads(res_.content.decode()) | |
| if "SUCCEEDED" == res['output']['task_status']: | |
| logger.info(f"task_id: {task_id}: Generation task query success.") | |
| results = res['output'] | |
| img_urls = results['output_img'] | |
| logger.info(f"task_id: {task_id}: {res}") | |
| break | |
| elif "FAILED" != res['output']['task_status']: | |
| logger.debug(f"task_id: {task_id}: query result...") | |
| time.sleep(1) | |
| else: | |
| raise gr.Error('Fail to get results from Generation task.') | |
| else: | |
| logger.error(f'task_id: {task_id}: Fail to query task result: {res_.content}') | |
| raise gr.Error("Fail to query task result.") | |
| logger.info(f"task_id: {task_id}: download generated images.") | |
| img_data = download_svgs(img_urls, BATCH_SIZE, svg_name) | |
| logger.info(f"task_id: {task_id}: Generate done.") | |
| all_image_data += img_data | |
| else: | |
| logger.error(f'Fail to create Generation task: {res_.content}') | |
| raise gr.Error("Fail to create Generation task.") | |
| if len(all_image_data) != REPEAT * BATCH_SIZE: | |
| raise gr.Error("Fail to Generation.") | |
| return all_image_data[-1:] | |
| def call_generation_t2v(prompt, | |
| num_imgs, | |
| image_resolution_h, | |
| image_resolution_w, | |
| details, | |
| style, | |
| vectorize, | |
| preprocess, | |
| simplify, | |
| optimize, | |
| mode, | |
| subsample_ratio, | |
| speckle_removal, | |
| sorting_method, | |
| sorting_order, | |
| use_gpu): | |
| ## generate image name based on time stamp | |
| time_str = time.strftime("%Y%m%d%H%M%S", time.localtime()) | |
| # img_name = f"upload_{time_str}.png" | |
| svg_name = f"result_{time_str}" | |
| generate_img_name = f"generate_{time_str}" | |
| BATCH_SIZE = 1 | |
| count = 1 | |
| start_ind = 0 | |
| if simplify: | |
| BATCH_SIZE += 1 | |
| count +=1 | |
| start_ind += 1 | |
| if optimize: | |
| BATCH_SIZE += 1 | |
| start_ind += 1 | |
| count +=1 | |
| BATCH_SIZE *= num_imgs | |
| # img_url = upload_np_2_oss(input_path, name=img_name) | |
| # simplify = convert_bool_to_str(simplify) | |
| # optimize = convert_bool_to_str(optimize) | |
| # speckle_removal = convert_bool_to_str(speckle_removal) | |
| # use_gpu = convert_bool_to_str(use_gpu) | |
| headers = { | |
| "Content-Type": "application/json", | |
| "Accept": "application/json", | |
| "Authorization": f"Bearer {API_KEY}", | |
| "X-DashScope-Async": "enable", | |
| } | |
| data = { | |
| "model": "pre-vectorize_anything_t2v-2352", | |
| "input": { | |
| "prompt": prompt | |
| }, | |
| "parameters":{ | |
| "num_imgs" : num_imgs, | |
| "image_resolution_h": image_resolution_h, | |
| "image_resolution_w": image_resolution_w, | |
| "details" : details, | |
| "style" : style, | |
| "vectorize" : vectorize, | |
| "preprocess": preprocess, | |
| "mode": mode, | |
| "simplify": simplify, | |
| "optimize": optimize, | |
| "sorting_method": sorting_method, | |
| "sorting_order": sorting_order, | |
| "subsample_ratio": subsample_ratio, | |
| "speckle_removal": speckle_removal, | |
| "use_GPU": use_gpu | |
| } | |
| } | |
| url_create_task = 'https://poc-dashscope.aliyuncs.com/api/v1/services/aigc/text2image/image-synthesis' | |
| all_res_ = [] | |
| REPEAT = 1 | |
| for _ in range(REPEAT): | |
| try: | |
| res_ = requests.post(url_create_task, data=json.dumps(data), headers=headers, timeout=120) | |
| print(json.dumps(data)) | |
| all_res_.append(res_) | |
| except requests.Timeout: | |
| # back off and retry | |
| raise gr.Error("网络波动,请求失败,请再次尝试") | |
| all_image_data = [] | |
| for res_ in all_res_: | |
| respose_code = res_.status_code | |
| if 200 == respose_code: | |
| res = json.loads(res_.content.decode()) | |
| request_id = res['request_id'] | |
| task_id = res['output']['task_id'] | |
| logger.info(f"task_id: {task_id}: Create Vectorize T2V request success. Params: {data}") | |
| # 异步查询 | |
| is_running = True | |
| while is_running: | |
| # url_query = f'https://dashscope.aliyuncs.com/api/v1/tasks/{task_id}' | |
| url_query = f'https://poc-dashscope.aliyuncs.com/api/v1/tasks/{task_id}' | |
| try: | |
| res_ = requests.post(url_query, headers=headers, timeout=120) | |
| except requests.Timeout: | |
| # back off and retry | |
| raise gr.Error("网络波动,请求失败,请再次尝试") | |
| respose_code = res_.status_code | |
| if 200 == respose_code: | |
| res = json.loads(res_.content.decode()) | |
| if "SUCCEEDED" == res['output']['task_status']: | |
| logger.info(f"task_id: {task_id}: Generation task query success.") | |
| results = res['output'] | |
| img_urls = results['output_img'] | |
| logger.info(f"task_id: {task_id}: {res}") | |
| break | |
| elif "FAILED" != res['output']['task_status']: | |
| logger.debug(f"task_id: {task_id}: query result...") | |
| time.sleep(1) | |
| else: | |
| raise gr.Error('Fail to get results from Generation task.') | |
| else: | |
| logger.error(f'task_id: {task_id}: Fail to query task result: {res_.content}') | |
| raise gr.Error("Fail to query task result.") | |
| logger.info(f"task_id: {task_id}: download generated images.") | |
| if vectorize: | |
| img_data = download_svgs(img_urls, BATCH_SIZE, svg_name) | |
| else: | |
| img_data = download_images(img_urls, num_imgs, generate_img_name) | |
| logger.info(f"task_id: {task_id}: Generate done.") | |
| all_image_data += img_data | |
| else: | |
| logger.error(f'Fail to create Generation task: {res_.content}') | |
| raise gr.Error("Fail to create Generation task.") | |
| if vectorize: | |
| if len(all_image_data) != REPEAT * BATCH_SIZE: | |
| raise gr.Error("Fail to Generation.") | |
| else: | |
| if len(all_image_data) != REPEAT * num_imgs: | |
| raise gr.Error("Fail to Generation.") | |
| return all_image_data[start_ind::BATCH_SIZE//num_imgs] | |
| if __name__ == "__main__": | |
| call_generation() | |