File size: 44,290 Bytes
8c833e9
 
 
 
 
fea8f94
8c833e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
8c833e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
8c833e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
8c833e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
 
8c833e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
8c833e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
8c833e9
 
 
 
 
 
1d58d7c
 
 
 
 
 
 
 
8c833e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
8c833e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
8c833e9
 
 
 
 
 
1d58d7c
 
 
 
 
 
 
 
8c833e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
8c833e9
 
 
 
 
 
 
1d58d7c
 
 
 
 
 
 
 
8c833e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
 
8c833e9
 
 
 
 
 
1d58d7c
 
 
 
8c833e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
8c833e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d58d7c
 
 
 
 
 
8c833e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
 
8c833e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d58d7c
 
 
 
 
 
 
 
8c833e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
 
8c833e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d58d7c
 
 
 
 
 
 
 
8c833e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
8c833e9
 
 
 
 
 
 
 
 
 
 
 
 
1d58d7c
 
 
 
8c833e9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
#define GGML_COMMON_IMPL_C
#include "ggml-common.h"
#include "ggml-quants.h"
#include "ggml-impl.h"
#include "ggml-cpu.h"
#include "simd-mappings.h"

#include "../../quants.h"
#include "../../ggml-cpu-impl.h"

#include <math.h>
#include <string.h>
#include <assert.h>
#include <float.h>
#include <stdlib.h> // for qsort
#include <stdio.h>  // for GGML_ASSERT

#define GROUP_MAX_EPS 1e-15f
#define GROUP_MAX_EPS_IQ3_XXS 1e-8f
#define GROUP_MAX_EPS_IQ2_S 1e-8f
#define GROUP_MAX_EPS_IQ1_M 1e-7f
#define GROUP_MAX_EPS_IQ1_S 1e-12f

#define UNUSED GGML_UNUSED

#if defined(__wasm_simd128__)
#define B1(c,s,n)  0x ## n ## c ,  0x ## n ## s
#define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
#define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
#define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
#define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
#define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
#define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
#define B8(c,s  ) B7(c,s,     c), B7(c,s,     s)

// precomputed tables for expanding 8bits to 8 bytes:
static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
#endif

void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
    assert(QK8_0 == 32);
    assert(k % QK8_0 == 0);
    const int nb = k / QK8_0;

    block_q8_0 * GGML_RESTRICT y = vy;

#if defined __wasm_simd128__
    for (int i = 0; i < nb; i++) {
        v128_t srcv [8];
        v128_t asrcv[8];
        v128_t amaxv[8];

        for (int j = 0; j < 8; j++) srcv[j]  = wasm_v128_load(x + i*32 + 4*j);
        for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);

        for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
        for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
        for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);

        const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
                                   wasm_f32x4_extract_lane(amaxv[0], 1)),
                               MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
                                   wasm_f32x4_extract_lane(amaxv[0], 3)));

        const float d = amax / ((1 << 7) - 1);
        const float id = d ? 1.0f/d : 0.0f;

        y[i].d = GGML_CPU_FP32_TO_FP16(d);

        for (int j = 0; j < 8; j++) {
            const v128_t v  = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
            const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);

            y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
            y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
            y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
            y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
        }
    }
#else
    GGML_UNUSED(nb);
    // scalar
    quantize_row_q8_0_ref(x, y, k);
#endif
}

void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT vy, int64_t k) {
    assert(k % QK8_1 == 0);
    const int nb = k / QK8_1;

    block_q8_1 * GGML_RESTRICT y = vy;
#if defined __wasm_simd128__
    for (int i = 0; i < nb; i++) {
        v128_t srcv [8];
        v128_t asrcv[8];
        v128_t amaxv[8];

        for (int j = 0; j < 8; j++) srcv[j]  = wasm_v128_load(x + i*32 + 4*j);
        for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);

        for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
        for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
        for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);

        const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
                                   wasm_f32x4_extract_lane(amaxv[0], 1)),
                               MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
                                   wasm_f32x4_extract_lane(amaxv[0], 3)));

        const float d = amax / ((1 << 7) - 1);
        const float id = d ? 1.0f/d : 0.0f;

        y[i].d = GGML_CPU_FP32_TO_FP16(d);

        v128_t accv = wasm_i32x4_splat(0);

        for (int j = 0; j < 8; j++) {
            const v128_t v  = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
            const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);

            y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
            y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
            y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
            y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);

            accv = wasm_i32x4_add(accv, vi);
        }

        y[i].s = GGML_CPU_FP32_TO_FP16(
                d * (wasm_i32x4_extract_lane(accv, 0) +
                     wasm_i32x4_extract_lane(accv, 1) +
                     wasm_i32x4_extract_lane(accv, 2) +
                     wasm_i32x4_extract_lane(accv, 3)));
    }
#else
    GGML_UNUSED(nb);
    // scalar
    quantize_row_q8_1_ref(x, y, k);
#endif
}

//===================================== Q8_K ==============================================

void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k) {
#ifdef __wasm_simd128__
    assert(k % QK_K == 0);
    const int64_t nb = k / QK_K;
    block_q8_K * GGML_RESTRICT yc = y; // Cast to proper type

    for (int i = 0; i < nb; i++) {
        const float * x_block = x + i * QK_K;

        v128_t min_vec = wasm_v128_load(x_block);
        v128_t max_vec = min_vec;

        for (int j = 4; j < QK_K; j += 4) {
            v128_t x_vec = wasm_v128_load(x_block + j);
            max_vec = wasm_f32x4_pmax(max_vec, x_vec);
            min_vec = wasm_f32x4_pmin(min_vec, x_vec);
        }
        max_vec = wasm_f32x4_pmax(max_vec, wasm_i32x4_shuffle(max_vec, max_vec, 2, 3, 0, 1));
        max_vec = wasm_f32x4_pmax(max_vec, wasm_i32x4_shuffle(max_vec, max_vec, 1, 0, 3, 2));
        min_vec = wasm_f32x4_pmin(min_vec, wasm_i32x4_shuffle(min_vec, min_vec, 2, 3, 0, 1));
        min_vec = wasm_f32x4_pmin(min_vec, wasm_i32x4_shuffle(min_vec, min_vec, 1, 0, 3, 2));
        float max = wasm_f32x4_extract_lane(max_vec, 0);
        float min = wasm_f32x4_extract_lane(min_vec, 0);
        float amax = -min > max ? min : max;

        if (amax == 0.0f) {
            yc[i].d = 0.0f;
            const v128_t zero = wasm_i8x16_splat(0);
            for (int j = 0; j < QK_K; j += 16) {
                wasm_v128_store(yc[i].qs + j, zero);
            }
            continue;
        }

        const float iscale = -127.0f / amax;
        const v128_t scale_vec = wasm_f32x4_splat(iscale);

        // Process 16 elements per iteration
        for (int j = 0, jb = 0; j < QK_K; j += 16, jb++) {
            // Load and quantize 16 floats
            v128_t x0 = wasm_v128_load(x_block + j);
            v128_t x1 = wasm_v128_load(x_block + j + 4);
            v128_t x2 = wasm_v128_load(x_block + j + 8);
            v128_t x3 = wasm_v128_load(x_block + j + 12);

            v128_t q0 = wasm_f32x4_nearest(wasm_f32x4_mul(x0, scale_vec));
            v128_t q1 = wasm_f32x4_nearest(wasm_f32x4_mul(x1, scale_vec));
            v128_t q2 = wasm_f32x4_nearest(wasm_f32x4_mul(x2, scale_vec));
            v128_t q3 = wasm_f32x4_nearest(wasm_f32x4_mul(x3, scale_vec));

            // Convert to i32 with saturation
            v128_t i0 = wasm_i32x4_trunc_sat_f32x4(q0);
            v128_t i1 = wasm_i32x4_trunc_sat_f32x4(q1);
            v128_t i2 = wasm_i32x4_trunc_sat_f32x4(q2);
            v128_t i3 = wasm_i32x4_trunc_sat_f32x4(q3);

            // Pack into 16 i8 values
            v128_t i8 = wasm_i8x16_narrow_i16x8(
                wasm_i16x8_narrow_i32x4(i0, i1),
                wasm_i16x8_narrow_i32x4(i2, i3)
            );
            wasm_v128_store(yc[i].qs + j, i8);

            // Calculate bsums using SIMD
            v128_t sum16 = wasm_i16x8_add(
                wasm_i16x8_extend_low_i8x16(i8),
                wasm_i16x8_extend_high_i8x16(i8)
            );
            v128_t sum32 = wasm_i32x4_add(
                wasm_i32x4_extend_low_i16x8(sum16),
                wasm_i32x4_extend_high_i16x8(sum16)
            );
            sum32 = wasm_i32x4_add(sum32, wasm_i32x4_shuffle(sum32, sum32, 2, 3, 0, 1));
            sum32 = wasm_i32x4_add(sum32, wasm_i32x4_shuffle(sum32, sum32, 1, 0, 3, 2));
            yc[i].bsums[jb] = wasm_i32x4_extract_lane(sum32, 0);
        }

        yc[i].d = 1.0f / iscale;
    }
#else
    quantize_row_q8_K_ref(x, y, k);
#endif
}


//===================================== Dot products =================================

void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
    const int qk = QK8_0;
    const int nb = n / qk;

    assert(n % qk == 0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q4_0 * GGML_RESTRICT x = vx;
    const block_q8_0 * GGML_RESTRICT y = vy;

    int ib = 0;
    float sumf = 0;

#if defined __wasm_simd128__
    v128_t sumv = wasm_f32x4_splat(0.0f);

    const v128_t m4b = wasm_i8x16_splat(0x0F);
    const v128_t s8b = wasm_i8x16_splat(0x8);

    for (; ib + 1 < nb; ib += 2) {
        const block_q4_0 * GGML_RESTRICT x0 = &x[ib];
        const block_q4_0 * GGML_RESTRICT x1 = &x[ib + 1];
        const block_q8_0 * GGML_RESTRICT y0 = &y[ib];
        const block_q8_0 * GGML_RESTRICT y1 = &y[ib + 1];

        // Load and process x0
        v128_t v0_0 = wasm_v128_load(x0->qs);
        v128_t v0_0l = wasm_v128_and(v0_0, m4b);
        v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
        v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
        v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);

        // Load y0 vectors
        v128_t y0_l = wasm_v128_load(y0->qs);
        v128_t y0_h = wasm_v128_load(y0->qs + 16);

        // Extend to i16x8 and compute dot products
        v128_t dx0l = wasm_i16x8_extend_low_i8x16(v0_0ls);
        v128_t dx0h = wasm_i16x8_extend_high_i8x16(v0_0ls);
        v128_t dx0hl = wasm_i16x8_extend_low_i8x16(v0_0hs);
        v128_t dx0hh = wasm_i16x8_extend_high_i8x16(v0_0hs);

        v128_t dy0ll = wasm_i16x8_extend_low_i8x16(y0_l);
        v128_t dy0lh = wasm_i16x8_extend_high_i8x16(y0_l);
        v128_t dy0hl = wasm_i16x8_extend_low_i8x16(y0_h);
        v128_t dy0hh = wasm_i16x8_extend_high_i8x16(y0_h);

        v128_t dp0 = wasm_i32x4_add(
            wasm_i32x4_add(
                wasm_i32x4_dot_i16x8(dx0l, dy0ll),
                wasm_i32x4_dot_i16x8(dx0h, dy0lh)
            ),
            wasm_i32x4_add(
                wasm_i32x4_dot_i16x8(dx0hl, dy0hl),
                wasm_i32x4_dot_i16x8(dx0hh, dy0hh)
            )
        );

        // Load and process x1
        v128_t v0_1 = wasm_v128_load(x1->qs);
        v128_t v0_1l = wasm_v128_and(v0_1, m4b);
        v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
        v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
        v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);

        // Load y1 vectors
        v128_t y1_l = wasm_v128_load(y1->qs);
        v128_t y1_h = wasm_v128_load(y1->qs + 16);

        // Extend to i16x8 and compute dot products
        v128_t dx1l = wasm_i16x8_extend_low_i8x16(v0_1ls);
        v128_t dx1h = wasm_i16x8_extend_high_i8x16(v0_1ls);
        v128_t dx1hl = wasm_i16x8_extend_low_i8x16(v0_1hs);
        v128_t dx1hh = wasm_i16x8_extend_high_i8x16(v0_1hs);

        v128_t dy1ll = wasm_i16x8_extend_low_i8x16(y1_l);
        v128_t dy1lh = wasm_i16x8_extend_high_i8x16(y1_l);
        v128_t dy1hl = wasm_i16x8_extend_low_i8x16(y1_h);
        v128_t dy1hh = wasm_i16x8_extend_high_i8x16(y1_h);

        v128_t dp1 = wasm_i32x4_add(
            wasm_i32x4_add(
                wasm_i32x4_dot_i16x8(dx1l, dy1ll),
                wasm_i32x4_dot_i16x8(dx1h, dy1lh)
            ),
            wasm_i32x4_add(
                wasm_i32x4_dot_i16x8(dx1hl, dy1hl),
                wasm_i32x4_dot_i16x8(dx1hh, dy1hh)
            )
        );

        // Accumulate results with scaling
        float scale0 = GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d);
        float scale1 = GGML_CPU_FP16_TO_FP32(x1->d) * GGML_CPU_FP16_TO_FP32(y1->d);

        sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(dp0), wasm_f32x4_splat(scale0)));
        sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(dp1), wasm_f32x4_splat(scale1)));
    }

    sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
           wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);

#endif
    for (; ib < nb; ++ib) {
        int sumi0 = 0;
        int sumi1 = 0;

        for (int j = 0; j < qk/2; ++j) {
            const int v0 = (x[ib].qs[j] & 0x0F) - 8;
            const int v1 = (x[ib].qs[j] >>   4) - 8;

            sumi0 += (v0 * y[ib].qs[j]);
            sumi1 += (v1 * y[ib].qs[j + qk/2]);
        }

        int sumi = sumi0 + sumi1;
        sumf += sumi*GGML_CPU_FP16_TO_FP32(x[ib].d)*GGML_CPU_FP16_TO_FP32(y[ib].d);
    }

    *s = sumf;
}

void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
    const int qk = QK8_0;
    const int nb = n / qk;

    int ib = 0;
    float sumf = 0;

    assert(n % qk == 0);
    assert(qk == QK5_0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q5_0 * GGML_RESTRICT x = vx;
    const block_q8_0 * GGML_RESTRICT y = vy;

#if defined __wasm_simd128__
    v128_t sumv = wasm_f32x4_splat(0.0f);

    uint32_t qh_;
    uint64_t tmp[4];

    // TODO: check if unrolling this is better
    for (; ib < nb; ++ib) {
        const block_q5_0 * GGML_RESTRICT x0 = &x[ib];
        const block_q8_0 * GGML_RESTRICT y0 = &y[ib];

        const v128_t m4b  = wasm_i8x16_splat(0x0F);

        // extract the 5th bit
        memcpy(&qh_, x0->qh, sizeof(qh_));

        tmp[0] = table_b2b_1[(qh_ >>  0) & 0xFF];
        tmp[1] = table_b2b_1[(qh_ >>  8) & 0xFF];
        tmp[2] = table_b2b_1[(qh_ >> 16) & 0xFF];
        tmp[3] = table_b2b_1[(qh_ >> 24)       ];

        const v128_t qhl = wasm_v128_load(tmp + 0);
        const v128_t qhh = wasm_v128_load(tmp + 2);

        const v128_t v0 = wasm_v128_load(x0->qs);

        // 4-bit -> 8-bit
        const v128_t v0l = wasm_v128_and (v0, m4b);
        const v128_t v0h = wasm_u8x16_shr(v0, 4);

        // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
        const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
        const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);

        // load y
        const v128_t v1l = wasm_v128_load(y0->qs);
        const v128_t v1h = wasm_v128_load(y0->qs + 16);

        // int8x16 -> int16x8
        const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
        const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
        const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
        const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);

        const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
        const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
        const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
        const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);

        // dot product
        sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
                        wasm_i32x4_add(
                            wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
                                           wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
                            wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
                                           wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
                    wasm_f32x4_splat(GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d))));
    }

    sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
           wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);

    *s = sumf;
#else
    UNUSED(nb);
    UNUSED(ib);
    UNUSED(sumf);
    UNUSED(x);
    UNUSED(y);
    ggml_vec_dot_q5_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}

void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
    const int qk = QK8_1;
    const int nb = n / qk;

    int ib = 0;
    float sumf = 0;

    assert(n % qk == 0);
    assert(qk == QK5_1);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q5_1 * GGML_RESTRICT x = vx;
    const block_q8_1 * GGML_RESTRICT y = vy;

#if defined __wasm_simd128__
    v128_t sumv = wasm_f32x4_splat(0.0f);

    float summs = 0.0f;

    uint32_t qh_;
    uint64_t tmp[4];

    // TODO: check if unrolling this is better
    for (; ib < nb; ++ib) {
        const block_q5_1 * GGML_RESTRICT x0 = &x[ib];
        const block_q8_1 * GGML_RESTRICT y0 = &y[ib];

        summs += GGML_CPU_FP16_TO_FP32(x0->m) * GGML_CPU_FP16_TO_FP32(y0->s);

        const v128_t m4b = wasm_i8x16_splat(0x0F);

        // extract the 5th bit
        memcpy(&qh_, x0->qh, sizeof(qh_));

        tmp[0] = table_b2b_0[(qh_ >>  0) & 0xFF];
        tmp[1] = table_b2b_0[(qh_ >>  8) & 0xFF];
        tmp[2] = table_b2b_0[(qh_ >> 16) & 0xFF];
        tmp[3] = table_b2b_0[(qh_ >> 24)       ];

        const v128_t qhl = wasm_v128_load(tmp + 0);
        const v128_t qhh = wasm_v128_load(tmp + 2);

        const v128_t v0 = wasm_v128_load(x0->qs);

        // 4-bit -> 8-bit
        const v128_t v0l = wasm_v128_and (v0, m4b);
        const v128_t v0h = wasm_u8x16_shr(v0, 4);

        // add high bit
        const v128_t v0lf = wasm_v128_or(v0l, qhl);
        const v128_t v0hf = wasm_v128_or(v0h, qhh);

        // load y
        const v128_t v1l = wasm_v128_load(y0->qs);
        const v128_t v1h = wasm_v128_load(y0->qs + 16);

        // int8x16 -> int16x8
        const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
        const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
        const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
        const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);

        const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
        const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
        const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
        const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);

        // dot product
        sumv = wasm_f32x4_add(sumv,
                wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
                            wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
                                           wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
                            wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
                                           wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
                    wasm_f32x4_splat(GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d))));
    }

    sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
           wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;

    *s = sumf;
#else
    UNUSED(nb);
    UNUSED(ib);
    UNUSED(sumf);
    UNUSED(x);
    UNUSED(y);
    ggml_vec_dot_q5_1_q8_1_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}

void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
    const int qk = QK8_0;
    const int nb = n / qk;

    assert(n % qk == 0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q8_0 * GGML_RESTRICT x = vx;
    const block_q8_0 * GGML_RESTRICT y = vy;

    int ib = 0;
    float sumf = 0;

#if defined __wasm_simd128__
    v128_t sumv = wasm_f32x4_splat(0.0f);

    for (; ib < nb; ++ib) {
        const block_q8_0 * GGML_RESTRICT x0 = &x[ib];
        const block_q8_0 * GGML_RESTRICT y0 = &y[ib];

        const v128_t x0_0 = wasm_v128_load(x0->qs);
        const v128_t x0_1 = wasm_v128_load(x0->qs + 16);
        const v128_t y0_0 = wasm_v128_load(y0->qs);
        const v128_t y0_1 = wasm_v128_load(y0->qs + 16);

        // Extend 8-bit to 16-bit
        const v128_t x0_0l = wasm_i16x8_extend_low_i8x16(x0_0);
        const v128_t x0_0h = wasm_i16x8_extend_high_i8x16(x0_0);
        const v128_t x0_1l = wasm_i16x8_extend_low_i8x16(x0_1);
        const v128_t x0_1h = wasm_i16x8_extend_high_i8x16(x0_1);

        const v128_t y0_0l = wasm_i16x8_extend_low_i8x16(y0_0);
        const v128_t y0_0h = wasm_i16x8_extend_high_i8x16(y0_0);
        const v128_t y0_1l = wasm_i16x8_extend_low_i8x16(y0_1);
        const v128_t y0_1h = wasm_i16x8_extend_high_i8x16(y0_1);

        // Compute dot products
        const v128_t dx0_0 = wasm_i32x4_dot_i16x8(x0_0l, y0_0l);
        const v128_t dx0_1 = wasm_i32x4_dot_i16x8(x0_0h, y0_0h);
        const v128_t dx1_0 = wasm_i32x4_dot_i16x8(x0_1l, y0_1l);
        const v128_t dx1_1 = wasm_i32x4_dot_i16x8(x0_1h, y0_1h);

        // Sum all dot products
        const v128_t sum_dots = wasm_i32x4_add(wasm_i32x4_add(dx0_0, dx0_1), wasm_i32x4_add(dx1_0, dx1_1));

        // Convert to float and accumulate
        const float scale = GGML_CPU_FP16_TO_FP32(x0->d) * GGML_CPU_FP16_TO_FP32(y0->d);
        sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(sum_dots), wasm_f32x4_splat(scale)));
    }

    sumf = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
           wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);

    *s = sumf;
#else
    UNUSED(nb);
    UNUSED(x);
    UNUSED(y);
    UNUSED(ib);
    UNUSED(sumf);
    ggml_vec_dot_q8_0_q8_0_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}

void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q2_K * GGML_RESTRICT x = vx;
    const block_q8_K * GGML_RESTRICT y = vy;

    const int nb = n / QK_K;

#if defined __wasm_simd128__
    float sumf = 0;

    for (int i = 0; i < nb; ++i) {
        const uint8_t * q2 = x[i].qs;
        const int8_t * q8 = y[i].qs;
        const uint8_t * sc = x[i].scales;

        // Vectorized summs calculation
        v128_t summs_vec = wasm_i32x4_splat(0);
        {
            v128_t sc_vec = wasm_v128_load(sc);
            v128_t sc_upper = wasm_u8x16_shr(sc_vec, 4);

            v128_t sc_low = wasm_u16x8_extend_low_u8x16(sc_upper);
            v128_t sc_high = wasm_u16x8_extend_high_u8x16(sc_upper);

            v128_t bsums1 = wasm_v128_load(&y[i].bsums[0]);
            v128_t bsums2 = wasm_v128_load(&y[i].bsums[8]);

            summs_vec = wasm_i32x4_add(
                wasm_i32x4_add(wasm_i32x4_dot_i16x8(sc_low, bsums1),
                               wasm_i32x4_dot_i16x8(sc_high, bsums2)),
                summs_vec
            );

            summs_vec = wasm_i32x4_add(summs_vec, wasm_i32x4_shuffle(summs_vec, summs_vec, 2, 3, 0, 1));
            summs_vec = wasm_i32x4_add(summs_vec, wasm_i32x4_shuffle(summs_vec, summs_vec, 1, 0, 3, 2));
        }
        int32_t summs = wasm_i32x4_extract_lane(summs_vec, 0);

        // Vectorized isum calculation
        int32_t isum = 0;
        const uint8_t * sc_ptr = sc;
        const int k_iters = QK_K/128;

        for (int k = 0; k < k_iters; ++k) {
            v128_t isum_vec = wasm_i32x4_splat(0);
            int shift = 0;

            for (int j = 0; j < 4; ++j) {
                const int d0 = (sc_ptr[0] & 0xF);
                const int d1 = (sc_ptr[1] & 0xF);
                sc_ptr += 2;

                // Process first 16 elements
                v128_t q2_0 = wasm_v128_load(q2);
                v128_t q8_0 = wasm_v128_load(q8);
                v128_t q2_shift_0 = wasm_u8x16_shr(q2_0, shift);
                v128_t q2_bits_0 = wasm_v128_and(q2_shift_0, wasm_i8x16_splat(0x03));

                // Process next 16 elements
                v128_t q2_1 = wasm_v128_load(q2 + 16);
                v128_t q8_1 = wasm_v128_load(q8 + 16);
                v128_t q2_shift_1 = wasm_u8x16_shr(q2_1, shift);
                v128_t q2_bits_1 = wasm_v128_and(q2_shift_1, wasm_i8x16_splat(0x03));

                // Calculate dot products
                v128_t p0 = wasm_i32x4_dot_i16x8(
                    wasm_i16x8_extend_low_i8x16(q8_0),
                    wasm_i16x8_extend_low_i8x16(q2_bits_0)
                );
                v128_t p1 = wasm_i32x4_dot_i16x8(
                    wasm_i16x8_extend_high_i8x16(q8_0),
                    wasm_i16x8_extend_high_i8x16(q2_bits_0)
                );
                v128_t p2 = wasm_i32x4_dot_i16x8(
                    wasm_i16x8_extend_low_i8x16(q8_1),
                    wasm_i16x8_extend_low_i8x16(q2_bits_1)
                );
                v128_t p3 = wasm_i32x4_dot_i16x8(
                    wasm_i16x8_extend_high_i8x16(q8_1),
                    wasm_i16x8_extend_high_i8x16(q2_bits_1)
                );

                // Accumulate scaled results
                v128_t scaled = wasm_i32x4_add(
                    wasm_i32x4_mul(wasm_i32x4_add(p0, p1), wasm_i32x4_splat(d0)),
                    wasm_i32x4_mul(wasm_i32x4_add(p2, p3), wasm_i32x4_splat(d1))
                );

                isum_vec = wasm_i32x4_add(isum_vec, scaled);
                q8 += 32;
                shift += 2;
            }
            q2 += 32;

            // Horizontal sum of isum_vec
            isum_vec = wasm_i32x4_add(isum_vec, wasm_i32x4_shuffle(isum_vec, isum_vec, 2, 3, 0, 1));
            isum_vec = wasm_i32x4_add(isum_vec, wasm_i32x4_shuffle(isum_vec, isum_vec, 1, 0, 3, 2));
            isum += wasm_i32x4_extract_lane(isum_vec, 0);
        }

        const float dall = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
        const float dmin = GGML_CPU_FP16_TO_FP32(x[i].dmin) * y[i].d;
        sumf += dall * isum - dmin * summs;
    }

    *s = sumf;

#else
    UNUSED(x);
    UNUSED(y);
    UNUSED(nb);
    ggml_vec_dot_q2_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}

void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
    assert(n % QK_K == 0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const uint32_t kmask1 = 0x03030303;
    const uint32_t kmask2 = 0x0f0f0f0f;

    const block_q3_K * GGML_RESTRICT x = vx;
    const block_q8_K * GGML_RESTRICT y = vy;

    const int nb = n / QK_K;

#if defined __wasm_simd128__
    int8_t  aux8[QK_K];
    float   sums[8] = {0};
    uint32_t auxs[4];

    float sumf = 0;
    for (int i = 0; i < nb; ++i) {
        const uint8_t * GGML_RESTRICT q3 = x[i].qs;
        const uint8_t * GGML_RESTRICT hm = x[i].hmask;
        const int8_t  * GGML_RESTRICT q8 = y[i].qs;

        // Process blocks with SIMD
        int8_t * a = aux8;
        uint8_t m = 1;
        for (int j = 0; j < QK_K; j += 128) {
            for (int shift = 0; shift <= 6; shift += 2) {
                v128_t v_m = wasm_i8x16_splat(m);
                for (int l = 0; l < 32; l += 16) {
                    v128_t v_q3 = wasm_v128_load(q3 + l);
                    v128_t v_shift = wasm_i8x16_shr(v_q3, shift);
                    v128_t v_low2 = wasm_v128_and(v_shift, wasm_i8x16_splat(0x03));

                    v128_t v_hm = wasm_v128_load(hm + l);
                    v128_t v_mask = wasm_v128_and(v_hm, v_m);
                    v_mask = wasm_i8x16_ne(v_mask, wasm_i8x16_splat(0));

                    v_low2 = wasm_i8x16_sub(v_low2, wasm_v128_and(wasm_i8x16_splat(4), wasm_v128_not(v_mask)));
                    wasm_v128_store(a + l, v_low2);
                }
                a += 32;
                m <<= 1;
            }
            q3 += 32;
        }

        // Extract scales
        memcpy(auxs, x[i].scales, 12);
        uint32_t tmp = auxs[2];
        auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
        auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
        auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
        auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
        const int8_t * scales = (const int8_t *)auxs;

        // SIMD dot product with register accumulators
        v128_t v_acc0 = wasm_i32x4_splat(0);
        v128_t v_acc1 = wasm_i32x4_splat(0);
        a = aux8;
        for (int j = 0; j < QK_K/16; ++j) {
            const v128_t v_scale = wasm_i16x8_splat(scales[j] - 32);

            // Process 16 elements per iteration
            for (int k = 0; k < 2; ++k) {
                const v128_t v_q8 = wasm_i16x8_load8x8(q8);
                const v128_t v_a = wasm_i16x8_load8x8(a);

                v128_t v_prod = wasm_i16x8_mul(v_q8, v_a);
                v_prod = wasm_i16x8_mul(v_prod, v_scale);

                v_acc0 = wasm_i32x4_add(v_acc0, wasm_i32x4_extend_low_i16x8(v_prod));
                v_acc1 = wasm_i32x4_add(v_acc1, wasm_i32x4_extend_high_i16x8(v_prod));

                q8 += 8;
                a += 8;
            }
        }

        // Accumulate results
        const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
        const v128_t v_d = wasm_f32x4_splat(d);
        v128_t v_sum = wasm_f32x4_add(
            wasm_f32x4_mul(wasm_f32x4_convert_i32x4(v_acc0), v_d),
            wasm_f32x4_mul(wasm_f32x4_convert_i32x4(v_acc1), v_d)
        );

        // Accumulate into sums vector
        wasm_v128_store(sums, wasm_f32x4_add(wasm_v128_load(sums), v_sum));
    }

    // Horizontal sum
    v128_t v_sum = wasm_f32x4_add(wasm_v128_load(sums), wasm_v128_load(sums + 4));
    sumf = wasm_f32x4_extract_lane(v_sum, 0) +
           wasm_f32x4_extract_lane(v_sum, 1) +
           wasm_f32x4_extract_lane(v_sum, 2) +
           wasm_f32x4_extract_lane(v_sum, 3);

    *s = sumf;

#else
    UNUSED(kmask1);
    UNUSED(kmask2);
    UNUSED(x);
    UNUSED(y);
    UNUSED(nb);
    ggml_vec_dot_q3_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif

}

void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
    assert(n % QK_K == 0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q4_K * GGML_RESTRICT x = vx;
    const block_q8_K * GGML_RESTRICT y = vy;

    const int nb = n / QK_K;

    static const uint32_t kmask1 = 0x3f3f3f3f;
    static const uint32_t kmask2 = 0x0f0f0f0f;
    static const uint32_t kmask3 = 0x03030303;

    uint32_t utmp[4];

#if defined __wasm_simd128__
    const uint8_t * scales = (const uint8_t*)&utmp[0];
    float sumf = 0;

    for (int i = 0; i < nb; ++i) {
        const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
        const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin); // Corrected sign

        const uint8_t * GGML_RESTRICT q4 = x[i].qs;
        const int8_t  * GGML_RESTRICT q8 = y[i].qs;

        // Process scales and mins
        memcpy(utmp, x[i].scales, 12);
        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
        const uint32_t uaux = utmp[1] & kmask1;
        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
        utmp[2] = uaux;
        utmp[0] &= kmask1;

        // Sum mins * q8sums
        int32_t sumi = 0;
        const int16_t * GGML_RESTRICT q8sums = y[i].bsums;
        const uint8_t * m = (const uint8_t *)&utmp[2];
        for (int j = 0; j < 16; j += 2) {
            sumi += (q8sums[j] + q8sums[j+1]) * m[j/2];
        }
        sumf -= dmin * sumi;

        int32_t sumi1 = 0;
        int32_t sumi2 = 0;

        for (int j = 0; j < QK_K/64; ++j) {
            // Load 64 4-bit weights (32 bytes)
            const v128_t q4x0 = wasm_v128_load(q4);
            const v128_t q4x1 = wasm_v128_load(q4 + 16);
            q4 += 32;

            // Split into low/high nibbles
            const v128_t q4l0 = wasm_v128_and(q4x0, wasm_i8x16_splat(0x0F));
            const v128_t q4h0 = wasm_u8x16_shr(q4x0, 4);
            const v128_t q4l1 = wasm_v128_and(q4x1, wasm_i8x16_splat(0x0F));
            const v128_t q4h1 = wasm_u8x16_shr(q4x1, 4);

            // Load 64 8-bit values (64 bytes)
            const v128_t q8x0 = wasm_v128_load(q8);
            const v128_t q8x1 = wasm_v128_load(q8 + 16);
            const v128_t q8x2 = wasm_v128_load(q8 + 32);
            const v128_t q8x3 = wasm_v128_load(q8 + 48);
            q8 += 64;

            // Low nibble products
            v128_t vacc1 = wasm_i32x4_dot_i16x8(
                wasm_i16x8_extend_low_i8x16(q4l0),
                wasm_i16x8_extend_low_i8x16(q8x0)
            );
            vacc1 = wasm_i32x4_add(vacc1, wasm_i32x4_dot_i16x8(
                wasm_i16x8_extend_high_i8x16(q4l0),
                wasm_i16x8_extend_high_i8x16(q8x0)
            ));
            vacc1 = wasm_i32x4_add(vacc1, wasm_i32x4_dot_i16x8(
                wasm_i16x8_extend_low_i8x16(q4l1),
                wasm_i16x8_extend_low_i8x16(q8x1)
            ));
            vacc1 = wasm_i32x4_add(vacc1, wasm_i32x4_dot_i16x8(
                wasm_i16x8_extend_high_i8x16(q4l1),
                wasm_i16x8_extend_high_i8x16(q8x1)
            ));

            // High nibble products
            v128_t vacc2 = wasm_i32x4_dot_i16x8(
                wasm_i16x8_extend_low_i8x16(q4h0),
                wasm_i16x8_extend_low_i8x16(q8x2)
            );
            vacc2 = wasm_i32x4_add(vacc2, wasm_i32x4_dot_i16x8(
                wasm_i16x8_extend_high_i8x16(q4h0),
                wasm_i16x8_extend_high_i8x16(q8x2)
            ));
            vacc2 = wasm_i32x4_add(vacc2, wasm_i32x4_dot_i16x8(
                wasm_i16x8_extend_low_i8x16(q4h1),
                wasm_i16x8_extend_low_i8x16(q8x3)
            ));
            vacc2 = wasm_i32x4_add(vacc2, wasm_i32x4_dot_i16x8(
                wasm_i16x8_extend_high_i8x16(q4h1),
                wasm_i16x8_extend_high_i8x16(q8x3)
            ));

            // Accumulate scaled results
            int32_t vacc1_sum = wasm_i32x4_extract_lane(vacc1, 0) + wasm_i32x4_extract_lane(vacc1, 1) +
                                wasm_i32x4_extract_lane(vacc1, 2) + wasm_i32x4_extract_lane(vacc1, 3);
            sumi1 += vacc1_sum * scales[2*j];

            int32_t vacc2_sum = wasm_i32x4_extract_lane(vacc2, 0) + wasm_i32x4_extract_lane(vacc2, 1) +
                                wasm_i32x4_extract_lane(vacc2, 2) + wasm_i32x4_extract_lane(vacc2, 3);
            sumi2 += vacc2_sum * scales[2*j+1];
        }

        sumf += d * (sumi1 + sumi2);
    }

    *s = sumf;

#else
    UNUSED(x);
    UNUSED(y);
    UNUSED(nb);
    UNUSED(kmask1);
    UNUSED(kmask2);
    UNUSED(kmask3);
    UNUSED(utmp);
    ggml_vec_dot_q4_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}

void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy,  size_t by, int nrc) {
    assert(n % QK_K == 0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q5_K * GGML_RESTRICT x = vx;
    const block_q8_K * GGML_RESTRICT y = vy;

    const int nb = n / QK_K;

    static const uint32_t kmask1 = 0x3f3f3f3f;
    static const uint32_t kmask2 = 0x0f0f0f0f;
    static const uint32_t kmask3 = 0x03030303;

    uint32_t utmp[4];

#if defined __wasm_simd128__
    //const uint8_t * scales = (const uint8_t*)&utmp[0];
    float sumf = 0;

    for (int i = 0; i < nb; ++i) {
        const float d = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].d);
        const float dmin = y[i].d * GGML_CPU_FP16_TO_FP32(x[i].dmin); // Fixed sign

        const uint8_t * GGML_RESTRICT q5 = x[i].qs;
        const uint8_t * GGML_RESTRICT qh = x[i].qh;
        const int8_t  * GGML_RESTRICT q8 = y[i].qs;

        // Process scales and mins
        memcpy(utmp, x[i].scales, 12);
        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
        const uint32_t uaux = utmp[1] & kmask1;
        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
        utmp[2] = uaux;
        utmp[0] &= kmask1;

        // Sum mins * q8sums
        int32_t sumi_mins = 0;
        const int16_t * GGML_RESTRICT q8sums = y[i].bsums;
        const uint8_t * m = (const uint8_t *)&utmp[2];
        for (int j = 0; j < 16; j += 2) {
            sumi_mins += (q8sums[j] + q8sums[j+1]) * m[j/2];
        }
        sumf -= dmin * sumi_mins; // Correct subtraction

        v128_t qh0 = wasm_v128_load(qh);
        v128_t qh1 = wasm_v128_load(qh + 16);
        const uint8_t * sc = (const uint8_t *)utmp;

        int32_t sumi = 0;

        for (int j = 0; j < QK_K/64; ++j) {
            const int shift = j * 2;
            v128_t qh_shift0 = wasm_u8x16_shr(qh0, shift);
            v128_t qh_shift1 = wasm_u8x16_shr(qh1, shift);

            v128_t qh_low0 = wasm_i8x16_shl(wasm_v128_and(qh_shift0, wasm_i8x16_splat(0x01)), 4);
            v128_t qh_high0 = wasm_i8x16_shl(wasm_v128_and(qh_shift0, wasm_i8x16_splat(0x02)), 3);
            v128_t qh_low1 = wasm_i8x16_shl(wasm_v128_and(qh_shift1, wasm_i8x16_splat(0x01)), 4);
            v128_t qh_high1 = wasm_i8x16_shl(wasm_v128_and(qh_shift1, wasm_i8x16_splat(0x02)), 3);

            v128_t q5_0 = wasm_v128_load(q5);
            v128_t q5_1 = wasm_v128_load(q5 + 16);
            q5 += 32;

            v128_t q5l_0 = wasm_v128_or(wasm_v128_and(q5_0, wasm_i8x16_splat(0x0F)), qh_low0);
            v128_t q5h_0 = wasm_v128_or(wasm_u8x16_shr(q5_0, 4), qh_high0);
            v128_t q5l_1 = wasm_v128_or(wasm_v128_and(q5_1, wasm_i8x16_splat(0x0F)), qh_low1);
            v128_t q5h_1 = wasm_v128_or(wasm_u8x16_shr(q5_1, 4), qh_high1);

            v128_t q8_0 = wasm_v128_load(q8);
            v128_t q8_1 = wasm_v128_load(q8 + 16);
            v128_t q8_2 = wasm_v128_load(q8 + 32);
            v128_t q8_3 = wasm_v128_load(q8 + 48);
            q8 += 64;

            // Process low quants
            v128_t pl0 = wasm_i32x4_dot_i16x8(
                wasm_i16x8_extend_low_i8x16(q5l_0),
                wasm_i16x8_extend_low_i8x16(q8_0)
            );
            pl0 = wasm_i32x4_add(pl0, wasm_i32x4_dot_i16x8(
                wasm_i16x8_extend_high_i8x16(q5l_0),
                wasm_i16x8_extend_high_i8x16(q8_0)
            ));
            v128_t pl1 = wasm_i32x4_dot_i16x8(
                wasm_i16x8_extend_low_i8x16(q5l_1),
                wasm_i16x8_extend_low_i8x16(q8_1)
            );
            pl1 = wasm_i32x4_add(pl1, wasm_i32x4_dot_i16x8(
                wasm_i16x8_extend_high_i8x16(q5l_1),
                wasm_i16x8_extend_high_i8x16(q8_1)
            ));
            v128_t sum_low = wasm_i32x4_add(pl0, pl1);

            // Process high quants
            v128_t ph0 = wasm_i32x4_dot_i16x8(
                wasm_i16x8_extend_low_i8x16(q5h_0),
                wasm_i16x8_extend_low_i8x16(q8_2)
            );
            ph0 = wasm_i32x4_add(ph0, wasm_i32x4_dot_i16x8(
                wasm_i16x8_extend_high_i8x16(q5h_0),
                wasm_i16x8_extend_high_i8x16(q8_2)
            ));
            v128_t ph1 = wasm_i32x4_dot_i16x8(
                wasm_i16x8_extend_low_i8x16(q5h_1),
                wasm_i16x8_extend_low_i8x16(q8_3)
            );
            ph1 = wasm_i32x4_add(ph1, wasm_i32x4_dot_i16x8(
                wasm_i16x8_extend_high_i8x16(q5h_1),
                wasm_i16x8_extend_high_i8x16(q8_3)
            ));
            v128_t sum_high = wasm_i32x4_add(ph0, ph1);

            // Accumulate with scale factors
            int32_t sl = wasm_i32x4_extract_lane(sum_low, 0) + wasm_i32x4_extract_lane(sum_low, 1) +
                        wasm_i32x4_extract_lane(sum_low, 2) + wasm_i32x4_extract_lane(sum_low, 3);
            int32_t sh = wasm_i32x4_extract_lane(sum_high, 0) + wasm_i32x4_extract_lane(sum_high, 1) +
                        wasm_i32x4_extract_lane(sum_high, 2) + wasm_i32x4_extract_lane(sum_high, 3);

            sumi += sl * sc[2*j] + sh * sc[2*j+1];
        }

        sumf += d * sumi;
    }

    *s = sumf;

#else
    UNUSED(x);
    UNUSED(y);
    UNUSED(nb);
    UNUSED(kmask1);
    UNUSED(kmask2);
    UNUSED(kmask3);
    UNUSED(utmp);
    ggml_vec_dot_q5_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}

void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
    assert(n % QK_K == 0);
    assert(nrc == 1);
    UNUSED(nrc);
    UNUSED(bx);
    UNUSED(by);
    UNUSED(bs);

    const block_q6_K * GGML_RESTRICT x = vx;
    const block_q8_K * GGML_RESTRICT y = vy;

    const int nb = n / QK_K;

#if defined __wasm_simd128__
    int8_t aux8[QK_K] __attribute__((aligned(16)));
    int32_t aux32[8] __attribute__((aligned(16))) = {0};
    float sums[8] __attribute__((aligned(16))) = {0};

    for (int i = 0; i < nb; ++i) {
        // Unpack 6-bit quantized data into aux8 (unchanged)
        const uint8_t * GGML_RESTRICT q4 = x[i].ql;
        const uint8_t * GGML_RESTRICT qh = x[i].qh;
        int8_t * a = aux8;
        for (int j = 0; j < QK_K; j += 128) {
            for (int l = 0; l < 32; ++l) {
                a[l +  0] = (int8_t)((q4[l +  0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
                a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
                a[l + 64] = (int8_t)((q4[l +  0] >>  4) | (((qh[l] >> 4) & 3) << 4)) - 32;
                a[l + 96] = (int8_t)((q4[l + 32] >>  4) | (((qh[l] >> 6) & 3) << 4)) - 32;
            }
            a += 128;
            q4 += 64;
            qh += 32;
        }

        const int8_t * GGML_RESTRICT a_ptr = aux8;
        const int8_t * GGML_RESTRICT q8 = y[i].qs;
        v128_t acc0 = wasm_i32x4_splat(0);
        v128_t acc1 = wasm_i32x4_splat(0);

        for (int j = 0; j < QK_K/16; ++j) {
            const int scale = x[i].scales[j];
            const v128_t vscale = wasm_i32x4_splat(scale);

            // Load 16 elements from a and q8
            const v128_t a_vec = wasm_v128_load(a_ptr);
            const v128_t q8_vec = wasm_v128_load(q8);

            // Process low 8 elements
            v128_t a_low = wasm_i16x8_extend_low_i8x16(a_vec);
            v128_t q8_low = wasm_i16x8_extend_low_i8x16(q8_vec);
            v128_t prod_low = wasm_i16x8_mul(a_low, q8_low);
            v128_t prod_lo_lo = wasm_i32x4_extend_low_i16x8(prod_low);
            v128_t prod_lo_hi = wasm_i32x4_extend_high_i16x8(prod_low);

            // Process high 8 elements
            v128_t a_high = wasm_i16x8_extend_high_i8x16(a_vec);
            v128_t q8_high = wasm_i16x8_extend_high_i8x16(q8_vec);
            v128_t prod_high = wasm_i16x8_mul(a_high, q8_high);
            v128_t prod_hi_lo = wasm_i32x4_extend_low_i16x8(prod_high);
            v128_t prod_hi_hi = wasm_i32x4_extend_high_i16x8(prod_high);

            // Scale and accumulate
            prod_lo_lo = wasm_i32x4_mul(prod_lo_lo, vscale);
            prod_lo_hi = wasm_i32x4_mul(prod_lo_hi, vscale);
            prod_hi_lo = wasm_i32x4_mul(prod_hi_lo, vscale);
            prod_hi_hi = wasm_i32x4_mul(prod_hi_hi, vscale);

            acc0 = wasm_i32x4_add(acc0, wasm_i32x4_add(prod_lo_lo, prod_hi_lo));
            acc1 = wasm_i32x4_add(acc1, wasm_i32x4_add(prod_lo_hi, prod_hi_hi));

            a_ptr += 16;
            q8 += 16;
        }

        // Store accumulated results
        wasm_v128_store(&aux32[0], acc0);
        wasm_v128_store(&aux32[4], acc1);

        const float d = GGML_CPU_FP16_TO_FP32(x[i].d) * y[i].d;
        for (int l = 0; l < 8; ++l) {
            sums[l] += d * aux32[l];
        }
    }

    // Sum final results
    float sumf = 0;
    for (int l = 0; l < 8; ++l) {
        sumf += sums[l];
    }
    *s = sumf;

#else
    UNUSED(x);
    UNUSED(y);
    UNUSED(nb);
    ggml_vec_dot_q6_K_q8_K_generic(n, s, bs, vx, bx, vy, by, nrc);
#endif
}