File size: 12,850 Bytes
0754d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7941e9b
 
 
 
0754d43
7941e9b
 
 
 
 
 
 
 
 
 
 
 
 
 
1b4087e
0754d43
7941e9b
 
1b4087e
0754d43
7941e9b
 
1b4087e
7941e9b
 
 
1b4087e
7941e9b
 
 
1b4087e
7941e9b
 
 
1b4087e
7941e9b
 
 
1b4087e
7941e9b
 
 
1b4087e
0754d43
7941e9b
 
 
 
 
 
1b4087e
7941e9b
 
 
 
 
 
 
 
 
 
 
 
0754d43
7941e9b
0754d43
7941e9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0754d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fea8f94
0754d43
7073590
 
 
0754d43
 
fea8f94
0754d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
add5c0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0754d43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
#include "vec.h"

#include <cassert>

// precomputed gelu table for f16 (128 KB)
ggml_fp16_t ggml_table_gelu_f16[1 << 16];

// precomputed quick gelu table for f16 (128 KB)
ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];

void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * GGML_RESTRICT x, size_t bx, const float * GGML_RESTRICT y, size_t by, int nrc) {
   assert(nrc == 1);
   GGML_UNUSED(nrc);
   GGML_UNUSED(bx);
   GGML_UNUSED(by);
   GGML_UNUSED(bs);

#if defined(GGML_SIMD)
    float sumf = 0.0f;

    #if defined(__ARM_FEATURE_SVE)
        const int sve_register_length = ggml_cpu_get_sve_cnt() * 8;
        const int ggml_f32_epr = sve_register_length / 32;//8;//svcntw(); // SVE128:4, SVE256:8, SVE512:16
        const int ggml_f32_step = 8 * ggml_f32_epr; // choose 8 SVE registers

        const int np = (n & ~(ggml_f32_step - 1));
        svfloat32_t sum1 = svdup_n_f32(0.0f);
        svfloat32_t sum2 = svdup_n_f32(0.0f);
        svfloat32_t sum3 = svdup_n_f32(0.0f);
        svfloat32_t sum4 = svdup_n_f32(0.0f);
        svfloat32_t sum5 = svdup_n_f32(0.0f);
        svfloat32_t sum6 = svdup_n_f32(0.0f);
        svfloat32_t sum7 = svdup_n_f32(0.0f);
        svfloat32_t sum8 = svdup_n_f32(0.0f);
        svfloat32_t ax1,ax2,ax3,ax4,ax5,ax6,ax7,ax8;
        svfloat32_t ay1,ay2,ay3,ay4,ay5,ay6,ay7,ay8;
        for (int i = 0; i < np; i += ggml_f32_step) {
            ax1 = GGML_F32_VEC_LOAD(x + i);
            ay1 = GGML_F32_VEC_LOAD(y + i);
            sum1 = GGML_F32_VEC_FMA(sum1, ax1, ay1);

            ax2 = GGML_F32_VEC_LOAD(x + i + 1*ggml_f32_epr);
            ay2 = GGML_F32_VEC_LOAD(y + i + 1*ggml_f32_epr);
            sum2 = GGML_F32_VEC_FMA(sum2, ax2, ay2);

            ax3 = GGML_F32_VEC_LOAD(x + i + 2*ggml_f32_epr);
            ay3 = GGML_F32_VEC_LOAD(y + i + 2*ggml_f32_epr);
            sum3 = GGML_F32_VEC_FMA(sum3, ax3, ay3);

            ax4 = GGML_F32_VEC_LOAD(x + i + 3*ggml_f32_epr);
            ay4 = GGML_F32_VEC_LOAD(y + i + 3*ggml_f32_epr);
            sum4 = GGML_F32_VEC_FMA(sum4, ax4, ay4);

            ax5 = GGML_F32_VEC_LOAD(x + i + 4*ggml_f32_epr);
            ay5 = GGML_F32_VEC_LOAD(y + i + 4*ggml_f32_epr);
            sum5 = GGML_F32_VEC_FMA(sum5, ax5, ay5);

            ax6 = GGML_F32_VEC_LOAD(x + i + 5*ggml_f32_epr);
            ay6 = GGML_F32_VEC_LOAD(y + i + 5*ggml_f32_epr);
            sum6 = GGML_F32_VEC_FMA(sum6, ax6, ay6);

            ax7 = GGML_F32_VEC_LOAD(x + i + 6*ggml_f32_epr);
            ay7 = GGML_F32_VEC_LOAD(y + i + 6*ggml_f32_epr);
            sum7 = GGML_F32_VEC_FMA(sum7, ax7, ay7);

            ax8 = GGML_F32_VEC_LOAD(x + i + 7*ggml_f32_epr);
            ay8 = GGML_F32_VEC_LOAD(y + i + 7*ggml_f32_epr);
            sum8 = GGML_F32_VEC_FMA(sum8, ax8, ay8);
        }
        // leftovers
        // Since 8 unrolls are done in above loop, leftovers lie in range [0, ggml_f32_step] which is handled in below loop
        const int np2 = (n & ~(ggml_f32_epr - 1));
        for (int i = np; i < np2; i += ggml_f32_epr) {
            ax1 = GGML_F32_VEC_LOAD(x + i);
            ay1 = GGML_F32_VEC_LOAD(y + i);
            sum1 = GGML_F32_VEC_FMA(sum1, ax1, ay1);
        }
        // maximum number of leftover elements will be less that ggml_f32_epr. Apply predicated svmad on available elements only
        if (np2 < n) {
            svbool_t pg = svwhilelt_b32(np2, n);
            ax1 = svld1_f32(pg, x + np2);
            ay1 = svld1_f32(pg, y + np2);
            sum1 = svmad_f32_m(pg, ax1, ay1, sum1);
        }
        // reduce sum1,sum2 to sum1
        GGML_F32_VEC_REDUCE(sumf, sum1, sum2, sum3, sum4, sum5, sum6, sum7, sum8);
    #else
        const int np = (n & ~(GGML_F32_STEP - 1));

        GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };

        GGML_F32_VEC ax[GGML_F32_ARR];
        GGML_F32_VEC ay[GGML_F32_ARR];

        for (int i = 0; i < np; i += GGML_F32_STEP) {
            for (int j = 0; j < GGML_F32_ARR; j++) {
                ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
                ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);

                sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
            }
        }

        // reduce sum0..sum3 to sum0
        GGML_F32_VEC_REDUCE(sumf, sum);

        // leftovers
        for (int i = np; i < n; ++i) {
            sumf += x[i]*y[i];
        }
    #endif
#else
    // scalar
    ggml_float sumf = 0.0;
    for (int i = 0; i < n; ++i) {
        sumf += (ggml_float)(x[i]*y[i]);
    }
#endif

    *s = sumf;
}

void ggml_vec_dot_bf16(int n, float * GGML_RESTRICT s, size_t bs, ggml_bf16_t * GGML_RESTRICT x, size_t bx, ggml_bf16_t * GGML_RESTRICT y, size_t by, int nrc) {
    assert(nrc == 1);
    GGML_UNUSED(nrc);
    GGML_UNUSED(bx);
    GGML_UNUSED(by);
    GGML_UNUSED(bs);
    int i = 0;
    ggml_float sumf = 0;

#if defined(__AVX512BF16__)
    __m512 c1 = _mm512_setzero_ps();
    __m512 c2 = _mm512_setzero_ps();
    for (; i + 64 <= n; i += 64) {
        c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
                             m512bh(_mm512_loadu_si512((y + i))));
        c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
                             m512bh(_mm512_loadu_si512((y + i + 32))));
    }
    sumf += (ggml_float)_mm512_reduce_add_ps(c1);
    sumf += (ggml_float)_mm512_reduce_add_ps(c2);

#elif defined(__AVX512F__)
#define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
    __m512 c1 = _mm512_setzero_ps();
    __m512 c2 = _mm512_setzero_ps();
    for (; i + 32 <= n; i += 32) {
        c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
        c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
    }
    sumf += (ggml_float)_mm512_reduce_add_ps(c1);
    sumf += (ggml_float)_mm512_reduce_add_ps(c2);

#undef LOAD
#elif defined(__AVX2__) || defined(__AVX__)
#if defined(__AVX2__)
#define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
#else
#define LOAD(p) _mm256_castsi256_ps(_mm256_insertf128_si256(_mm256_castsi128_si256(_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16)), (_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_bsrli_si128(_mm_loadu_si128((const __m128i *)(p)), 8)), 16)), 1))
#endif
    __m256 c1 = _mm256_setzero_ps();
    __m256 c2 = _mm256_setzero_ps();
    __m256 c3 = _mm256_setzero_ps();
    __m256 c4 = _mm256_setzero_ps();
    for (; i + 32 <= n; i += 32) {
        c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
        c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
        c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
        c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
    }
    __m128 g;
    c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
                       _mm256_add_ps(c2, c4));
    g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
                   _mm256_castps256_ps128(c1));
    g = _mm_add_ps(g, _mm_movehl_ps(g, g));
    g = _mm_add_ss(g, _mm_movehdup_ps(g));
    sumf += (ggml_float)_mm_cvtss_f32(g);

#undef LOAD
#endif

    for (; i < n; ++i) {
        sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
                             GGML_BF16_TO_FP32(y[i]));
    }
    *s = sumf;
}

void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * GGML_RESTRICT x, size_t bx, ggml_fp16_t * GGML_RESTRICT y, size_t by, int nrc) {
    assert(nrc == 1);
    GGML_UNUSED(nrc);
    GGML_UNUSED(bx);
    GGML_UNUSED(by);
    GGML_UNUSED(bs);

    ggml_float sumf = 0.0;

#if defined(GGML_SIMD)
    const int np = (n & ~(GGML_F16_STEP - 1));

    GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };

    GGML_F16_VEC ax[GGML_F16_ARR];
    GGML_F16_VEC ay[GGML_F16_ARR];

    for (int i = 0; i < np; i += GGML_F16_STEP) {
        for (int j = 0; j < GGML_F16_ARR; j++) {
            ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
            ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);

            sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
        }
    }

    // reduce sum0..sum3 to sum0
    GGML_F16_VEC_REDUCE(sumf, sum);

    // leftovers
    for (int i = np; i < n; ++i) {
        sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
    }

    // if you hit this, you are likely running outside the FP range
    assert(!isnan(sumf) && !isinf(sumf));
#else
    for (int i = 0; i < n; ++i) {
        sumf += (ggml_float)(GGML_CPU_FP16_TO_FP32(x[i])*GGML_CPU_FP16_TO_FP32(y[i]));
    }
#endif

    *s = sumf;
}

void ggml_vec_silu_f32(const int n, float * y, const float * x) {
    int i = 0;
#if defined(__AVX512F__) && defined(__AVX512DQ__)
    for (; i + 15 < n; i += 16) {
        _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
    }
#elif defined(__AVX2__) && defined(__FMA__)
    for (; i + 7 < n; i += 8) {
        _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
    }
#elif defined(__SSE2__)
    for (; i + 3 < n; i += 4) {
        _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
    }
#elif defined(__ARM_NEON) && defined(__aarch64__)
    for (; i + 3 < n; i += 4) {
        vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
    }
#endif
    for (; i < n; ++i) {
        y[i] = ggml_silu_f32(x[i]);
    }
}

void ggml_vec_swiglu_f32(const int n, float * y, const float * x, const float * g) {
    int i = 0;
#if defined(__AVX512F__) && defined(__AVX512DQ__)
    for (; i + 15 < n; i += 16) {
        _mm512_storeu_ps(y + i, _mm512_mul_ps(ggml_v_silu(_mm512_loadu_ps(x + i)), _mm512_loadu_ps(g + i)));
    }
#elif defined(__AVX2__) && defined(__FMA__)
    for (; i + 7 < n; i += 8) {
        _mm256_storeu_ps(y + i, _mm256_mul_ps(ggml_v_silu(_mm256_loadu_ps(x + i)), _mm256_loadu_ps(g + i)));
    }
#elif defined(__SSE2__)
    for (; i + 3 < n; i += 4) {
        _mm_storeu_ps(y + i, _mm_mul_ps(ggml_v_silu(_mm_loadu_ps(x + i)), _mm_loadu_ps(g + i)));
    }
#elif defined(__ARM_NEON) && defined(__aarch64__)
    for (; i + 3 < n; i += 4) {
        vst1q_f32(y + i, vmulq_f32(ggml_v_silu(vld1q_f32(x + i)), vld1q_f32(g + i)));
    }
#endif
    for (; i < n; ++i) {
        y[i] = ggml_silu_f32(x[i]) * g[i];
    }
}

ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
    int i = 0;
    ggml_float sum = 0;
#if defined(__AVX512F__) && defined(__AVX512DQ__)
    for (; i + 15 < n; i += 16) {
        __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
                                               _mm512_set1_ps(max)));
        _mm512_storeu_ps(y + i, val);
        sum += (ggml_float)_mm512_reduce_add_ps(val);
    }
#elif defined(__AVX2__) && defined(__FMA__)
    for (; i + 7 < n; i += 8) {
        __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
                                               _mm256_set1_ps(max)));
        _mm256_storeu_ps(y + i, val);
        __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
                                 _mm256_castps256_ps128(val));
        val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
        val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
        sum += (ggml_float)_mm_cvtss_f32(val2);
    }
#elif defined(__SSE2__)
    for (; i + 3 < n; i += 4) {
        __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
                                            _mm_set1_ps(max)));
        _mm_storeu_ps(y + i, val);
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
        val = _mm_add_ps(val, _mm_movehl_ps(val, val));
        val = _mm_add_ss(val, _mm_movehdup_ps(val));
#else
        __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
        val = _mm_add_ps(val, tmp);
        tmp = _mm_movehl_ps(tmp, val);
        val = _mm_add_ss(val, tmp);
#endif
        sum += (ggml_float)_mm_cvtss_f32(val);
    }
#elif defined(__ARM_NEON) && defined(__aarch64__)
    for (; i + 3 < n; i += 4) {
        float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
                                                vdupq_n_f32(max)));
        vst1q_f32(y + i, val);
        sum += (ggml_float)vaddvq_f32(val);
    }
#endif
    for (; i < n; ++i) {
        float val = expf(x[i] - max);
        sum += (ggml_float)val;
        y[i] = val;
    }
    return sum;
}

ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max) {
    // log(soft_max) = log(soft_max_i / soft_max_sum) = log(soft_max_i) - log(soft_max_sum) = (logit_i - max) - log(soft_max_i)

    int i = 0;
    ggml_float sum = 0;
    for (; i < n; ++i) {
        float val = x[i] - max;
        y[i] = val;
        sum += (ggml_float)expf(val);
    }
    return sum = (ggml_float)logf(sum);
}