File size: 2,266 Bytes
3232d64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
"""
API utility functions for pipelines.
"""
import logging
from typing import Dict, Any, Optional

from .common import get_evaluation_type

logger = logging.getLogger(__name__)

def update_status(run_id: str) -> Dict[str, Any]:
    """
    Update status for the current evaluation type
    
    Args:
        run_id: The run ID to check status for
        
    Returns:
        Dict with status information
    """
    if not run_id:
        return {
            "status": "error",
            "message": "No run ID provided"
        }
    
    logger.info(f"Checking status for run ID: {run_id}")
    
    # In the new design, we're using a unified Airflow approach
    # This function is kept for compatibility with existing code
    return {
        "status": "pending",
        "message": "Status checking is not implemented in the unified benchmark approach"
    }

def fetch_logs(run_id: str) -> Dict[str, Any]:
    """
    Fetch logs for the current evaluation type
    
    Args:
        run_id: The run ID to fetch logs for
        
    Returns:
        Dict with logs information
    """
    if not run_id:
        return {
            "status": "error",
            "message": "No run ID provided"
        }
    
    logger.info(f"Fetching logs for run ID: {run_id}")
    
    # In the new design, we're using a unified Airflow approach
    # This function is kept for compatibility with existing code
    return {
        "status": "pending",
        "logs": f"Logs for run ID {run_id} are not available in the unified benchmark approach"
    }

def fetch_results(run_id: str) -> Dict[str, Any]:
    """
    Fetch results for the current evaluation type
    
    Args:
        run_id: The run ID to fetch results for
        
    Returns:
        Dict with results information
    """
    if not run_id:
        return {
            "status": "error",
            "message": "No run ID provided"
        }
    
    logger.info(f"Fetching results for run ID: {run_id}")
    
    # In the new design, we're using a unified Airflow approach
    # This function is kept for compatibility with existing code
    return {
        "status": "pending",
        "results": f"Results for run ID {run_id} are not available in the unified benchmark approach"
    }