Spaces:
Sleeping
Sleeping
File size: 6,335 Bytes
9fa24be aeb4847 9fa24be 794e8a6 9fa24be 794e8a6 9fa24be aeb4847 9fa24be 794e8a6 9fa24be aeb4847 9fa24be aeb4847 9fa24be aeb4847 9fa24be aeb4847 9fa24be 1f0a3f9 f99db71 9fa24be 1f0a3f9 9fa24be 1f0a3f9 9fa24be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
"""
Token Journey Visualizer - Transformation Inspector
"""
import gradio as gr
import numpy as np
from utils import extract_single_transformation, get_token_choices
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
cached_data = {}
def format_vector(vector, title):
"""Format vector as HTML table (first 50 + ... + last 50)."""
first_vals = vector[:50]
last_vals = vector[-50:]
sample = np.concatenate([first_vals, last_vals])
html = f"<h3>{title}</h3>"
html += "<div style='font-family: monospace; font-size: 11px; max-width: 100%; overflow-x: scroll;'>"
html += "<table style='border-collapse: collapse;'>"
html += "<tr>"
# First 50 dimensions
for idx in range(50):
val = sample[idx]
color = "gray"
html += f"<td style='padding: 4px; text-align: right; color: {color}; border: 1px solid #eee;'>{val:.4f}</td>"
# Separator
html += "<td style='padding: 4px; text-align: center; font-weight: bold;'>...</td>"
# Last 50 dimensions
for idx in range(50, 100):
val = sample[idx]
color = "gray"
html += f"<td style='padding: 4px; text-align: right; color: {color}; border: 1px solid #eee;'>{val:.4f}</td>"
html += "</tr>"
html += "</table></div>"
return html
def format_matrix(matrix, title):
"""Format matrix as HTML table (first 50x50 + ... + last 50x50)."""
first_first = matrix[:50, :50]
first_last = matrix[:50, -50:]
last_first = matrix[-50:, :50]
last_last = matrix[-50:, -50:]
sample_first = np.concatenate([first_first, first_last], axis=1)
sample_last = np.concatenate([last_first, last_last], axis=1)
sample = np.concatenate([sample_first, sample_last], axis=0)
html = f"<h3>{title}</h3>"
html += "<div style='font-family: monospace; font-size: 9px; max-height: 600px; overflow: scroll;'>"
html += "<table style='border-collapse: collapse;'>"
# First 50 rows
for row in range(50):
html += "<tr>"
# First 50 columns
for col in range(50):
val = sample[row, col]
color = "gray"
html += f"<td style='padding: 2px; text-align: right; color: {color}; border: 1px solid #eee;'>{val:.4f}</td>"
# Column separator
html += "<td style='padding: 2px; text-align: center; font-weight: bold;'>...</td>"
# Last 50 columns
for col in range(50, 100):
val = sample[row, col]
color = "gray"
html += f"<td style='padding: 2px; text-align: right; color: {color}; border: 1px solid #eee;'>{val:.4f}</td>"
html += "</tr>"
# Row separator
html += "<tr>"
for _ in range(50):
html += "<td style='padding: 2px; text-align: center; font-weight: bold;'>⋮</td>"
html += "<td style='padding: 2px; text-align: center; font-weight: bold;'>⋱</td>"
for _ in range(50):
html += "<td style='padding: 2px; text-align: center; font-weight: bold;'>⋮</td>"
html += "</tr>"
# Last 50 rows
for row in range(50, 100):
html += "<tr>"
# First 50 columns
for col in range(50):
val = sample[row, col]
color = "gray"
html += f"<td style='padding: 2px; text-align: right; color: {color}; border: 1px solid #eee;'>{val:.4f}</td>"
# Column separator
html += "<td style='padding: 2px; text-align: center; font-weight: bold;'>...</td>"
# Last 50 columns
for col in range(50, 100):
val = sample[row, col]
color = "gray"
html += f"<td style='padding: 2px; text-align: right; color: {color}; border: 1px solid #eee;'>{val:.4f}</td>"
html += "</tr>"
html += "</table></div>"
return html
def process_text(text):
"""Tokenize text."""
if not text.strip():
return gr.Dropdown(choices=[])
try:
choices, indices = get_token_choices(text, MODEL_NAME)
cached_data['text'] = text
print(f"✅ Tokenized: {len(choices)} tokens")
return gr.update(choices=choices, value=choices[0] if choices else None)
except Exception as e:
print(f"❌ Error in process_text: {e}")
import traceback
traceback.print_exc()
return gr.update(choices=[], value=None)
def visualize_transformation(token_choice, layer):
"""Show transformation as numbers."""
print(f"Visualize called: token={token_choice}, layer={layer}")
if not token_choice:
print("⚠️ No token selected")
return "⚠️ Select a token first", "", ""
if 'text' not in cached_data:
print("⚠️ No text in cache")
return "⚠️ Process text first", "", ""
try:
token_index = int(token_choice.split(":")[0])
result = extract_single_transformation(
text=cached_data['text'],
token_index=token_index,
component="q_proj",
layer=layer,
model_name=MODEL_NAME
)
input_html = format_vector(result['input_vector'], "Input Vector (100 dims)")
matrix_html = format_matrix(result['weight_matrix'], "W_q Matrix (100×100)")
output_html = format_vector(result['output_vector'], "Output Vector (100 dims)")
return input_html, matrix_html, output_html
except Exception as e:
return f"Error: {e}", "", ""
with gr.Blocks() as demo:
gr.Markdown("# Token Transformation Inspector")
with gr.Row():
text_input = gr.Textbox(label="Text", value="The cat sat on the mat")
process_btn = gr.Button("Process")
with gr.Row():
token_dropdown = gr.Dropdown(label="Token", choices=[])
layer_slider = gr.Slider(0, 21, value=0, step=1, label="Layer")
visualize_btn = gr.Button("Visualize")
input_display = gr.HTML()
matrix_display = gr.HTML()
output_display = gr.HTML()
process_btn.click(process_text, text_input, token_dropdown)
visualize_btn.click(visualize_transformation, [token_dropdown, layer_slider],
[input_display, matrix_display, output_display])
if __name__ == "__main__":
demo.launch() |