""" Utility functions for Token Journey Visualizer Extracts and analyzes token representations through LLM layers """ import torch from transformers import AutoTokenizer, AutoModelForCausalLM import numpy as np from typing import Dict, List, Tuple # Al inicio del archivo, después de los imports _model_cache = {} def get_model(model_name: str): """ Load model only once and cache it. Uses float16 on GPU, float32 on CPU. """ if model_name not in _model_cache: print(f"Loading model: {model_name}") # Detect if GPU is available device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float16 if device == "cuda" else torch.float32 print(f"Using device: {device}, dtype: {dtype}") tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, output_hidden_states=True, torch_dtype=dtype, # ← float32 en CPU, float16 en GPU device_map="auto", low_cpu_mem_usage=True ) model.eval() _model_cache[model_name] = (tokenizer, model) print(f"Model loaded and cached") return _model_cache[model_name] def extract_single_transformation( text: str, token_index: int, component: str, layer: int = 0, model_name: str = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" ) -> Dict: """ Extract a single transformation: input vector → weight matrix → output vector. Args: text: Input text token_index: Which token to track component: Which transformation ("q_proj", "k_proj", "v_proj", "o_proj", etc.) layer: Which layer (0-21 for TinyLlama) model_name: Model identifier Returns: dict: { 'input_vector': np.array (2048,), 'weight_matrix': np.array (2048, 2048), 'output_vector': np.array (2048,), 'token_text': str, 'component_name': str } """ # Load model and tokenizer tokenizer, model = get_model(model_name) model.eval() # Tokenize tokens = tokenizer(text, return_tensors="pt") token_ids = tokens.input_ids[0] if token_index >= len(token_ids): raise ValueError(f"token_index {token_index} out of range") token_text = tokenizer.decode([token_ids[token_index]]) # Forward pass with torch.no_grad(): outputs = model(**tokens) # Get the input to the selected layer (normalized embeddings or previous layer output) hidden_states = outputs.hidden_states # CASE: Q Projection in a specific layer if component == "q_proj": # Input: after input_layernorm input_hidden = hidden_states[layer + 1][0, token_index] # +1 because hidden_states[0] is embeddings # Get normalized input (what actually goes into Q projection) layer_module = model.model.layers[layer] normalized_input = layer_module.input_layernorm(hidden_states[layer + 1][0:1, token_index:token_index+1, :]) input_vector = normalized_input[0, 0].detach().cpu().float().numpy() # Weight matrix weight_matrix = layer_module.self_attn.q_proj.weight.detach().cpu().numpy() # Output vector output_vector = layer_module.self_attn.q_proj(normalized_input)[0, 0].detach().cpu().numpy() component_name = f"Layer {layer} - Q Projection" # TODO: Add more components (k_proj, v_proj, o_proj, mlp, etc.) else: raise NotImplementedError(f"Component '{component}' not implemented yet") return { 'input_vector': input_vector, 'weight_matrix': weight_matrix, 'output_vector': output_vector, 'token_text': token_text, 'component_name': component_name } def get_token_choices(text: str, model_name: str) -> Tuple[List[str], List[int]]: """ Tokenize text and return choices for dropdown. Args: text (str): Input text model_name (str): HuggingFace model identifier Returns: Tuple[List[str], List[int]]: - List of formatted token choices for UI - List of corresponding token indices """ tokenizer, model = get_model(model_name) tokens = tokenizer(text, return_tensors="pt") token_ids = tokens.input_ids[0] choices = [] indices = [] for idx, tid in enumerate(token_ids): token_text = tokenizer.decode([tid]) choices.append(f"{idx}: `{token_text}`") indices.append(idx) return choices, indices # Test function if __name__ == "__main__": result = extract_single_transformation( text="The cat sat on the mat", token_index=1, component="q_proj", layer=0 ) print(f"Token: {result['token_text']}") print(f"Component: {result['component_name']}") print(f"Input shape: {result['input_vector'].shape}") print(f"Weight shape: {result['weight_matrix'].shape}") print(f"Output shape: {result['output_vector'].shape}") # Verify matrix multiplication manual_output = result['input_vector'] @ result['weight_matrix'].T print(f"\nVerification (should be close to 0): {np.linalg.norm(manual_output - result['output_vector']):.6f}")