Spaces:
Paused
Paused
| #!/usr/bin/env python | |
| # coding=utf-8 | |
| # Copyright 2025 The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """Fine-tuning script for Stable Diffusion XL for text2image.""" | |
| import argparse | |
| import functools | |
| import gc | |
| import logging | |
| import math | |
| import os | |
| import random | |
| import shutil | |
| from contextlib import nullcontext | |
| from pathlib import Path | |
| import accelerate | |
| import datasets | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint | |
| import transformers | |
| from accelerate import Accelerator | |
| from accelerate.logging import get_logger | |
| from accelerate.utils import DistributedType, ProjectConfiguration, set_seed | |
| from datasets import concatenate_datasets, load_dataset | |
| from huggingface_hub import create_repo, upload_folder | |
| from packaging import version | |
| from torchvision import transforms | |
| from torchvision.transforms.functional import crop | |
| from tqdm.auto import tqdm | |
| from transformers import AutoTokenizer, PretrainedConfig | |
| import diffusers | |
| from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionXLPipeline, UNet2DConditionModel | |
| from diffusers.optimization import get_scheduler | |
| from diffusers.training_utils import EMAModel, compute_snr | |
| from diffusers.utils import check_min_version, is_wandb_available | |
| from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card | |
| from diffusers.utils.import_utils import is_torch_npu_available, is_xformers_available | |
| from diffusers.utils.torch_utils import is_compiled_module | |
| # Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
| check_min_version("0.36.0.dev0") | |
| logger = get_logger(__name__) | |
| if is_torch_npu_available(): | |
| import torch_npu | |
| torch.npu.config.allow_internal_format = False | |
| DATASET_NAME_MAPPING = { | |
| "lambdalabs/naruto-blip-captions": ("image", "text"), | |
| } | |
| def save_model_card( | |
| repo_id: str, | |
| images: list = None, | |
| validation_prompt: str = None, | |
| base_model: str = None, | |
| dataset_name: str = None, | |
| repo_folder: str = None, | |
| vae_path: str = None, | |
| ): | |
| img_str = "" | |
| if images is not None: | |
| for i, image in enumerate(images): | |
| image.save(os.path.join(repo_folder, f"image_{i}.png")) | |
| img_str += f"\n" | |
| model_description = f""" | |
| # Text-to-image finetuning - {repo_id} | |
| This pipeline was finetuned from **{base_model}** on the **{dataset_name}** dataset. Below are some example images generated with the finetuned pipeline using the following prompt: {validation_prompt}: \n | |
| {img_str} | |
| Special VAE used for training: {vae_path}. | |
| """ | |
| model_card = load_or_create_model_card( | |
| repo_id_or_path=repo_id, | |
| from_training=True, | |
| license="creativeml-openrail-m", | |
| base_model=base_model, | |
| model_description=model_description, | |
| inference=True, | |
| ) | |
| tags = [ | |
| "stable-diffusion-xl", | |
| "stable-diffusion-xl-diffusers", | |
| "text-to-image", | |
| "diffusers-training", | |
| "diffusers", | |
| ] | |
| model_card = populate_model_card(model_card, tags=tags) | |
| model_card.save(os.path.join(repo_folder, "README.md")) | |
| def import_model_class_from_model_name_or_path( | |
| pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" | |
| ): | |
| text_encoder_config = PretrainedConfig.from_pretrained( | |
| pretrained_model_name_or_path, subfolder=subfolder, revision=revision | |
| ) | |
| model_class = text_encoder_config.architectures[0] | |
| if model_class == "CLIPTextModel": | |
| from transformers import CLIPTextModel | |
| return CLIPTextModel | |
| elif model_class == "CLIPTextModelWithProjection": | |
| from transformers import CLIPTextModelWithProjection | |
| return CLIPTextModelWithProjection | |
| else: | |
| raise ValueError(f"{model_class} is not supported.") | |
| def parse_args(input_args=None): | |
| parser = argparse.ArgumentParser(description="Simple example of a training script.") | |
| parser.add_argument( | |
| "--pretrained_model_name_or_path", | |
| type=str, | |
| default=None, | |
| required=True, | |
| help="Path to pretrained model or model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--pretrained_vae_model_name_or_path", | |
| type=str, | |
| default=None, | |
| help="Path to pretrained VAE model with better numerical stability. More details: https://github.com/huggingface/diffusers/pull/4038.", | |
| ) | |
| parser.add_argument( | |
| "--revision", | |
| type=str, | |
| default=None, | |
| required=False, | |
| help="Revision of pretrained model identifier from huggingface.co/models.", | |
| ) | |
| parser.add_argument( | |
| "--variant", | |
| type=str, | |
| default=None, | |
| help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16", | |
| ) | |
| parser.add_argument( | |
| "--dataset_name", | |
| type=str, | |
| default=None, | |
| help=( | |
| "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," | |
| " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," | |
| " or to a folder containing files that 🤗 Datasets can understand." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--dataset_config_name", | |
| type=str, | |
| default=None, | |
| help="The config of the Dataset, leave as None if there's only one config.", | |
| ) | |
| parser.add_argument( | |
| "--train_data_dir", | |
| type=str, | |
| default=None, | |
| help=( | |
| "A folder containing the training data. Folder contents must follow the structure described in" | |
| " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" | |
| " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--image_column", type=str, default="image", help="The column of the dataset containing an image." | |
| ) | |
| parser.add_argument( | |
| "--caption_column", | |
| type=str, | |
| default="text", | |
| help="The column of the dataset containing a caption or a list of captions.", | |
| ) | |
| parser.add_argument( | |
| "--validation_prompt", | |
| type=str, | |
| default=None, | |
| help="A prompt that is used during validation to verify that the model is learning.", | |
| ) | |
| parser.add_argument( | |
| "--num_validation_images", | |
| type=int, | |
| default=4, | |
| help="Number of images that should be generated during validation with `validation_prompt`.", | |
| ) | |
| parser.add_argument( | |
| "--validation_epochs", | |
| type=int, | |
| default=1, | |
| help=( | |
| "Run fine-tuning validation every X epochs. The validation process consists of running the prompt" | |
| " `args.validation_prompt` multiple times: `args.num_validation_images`." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--max_train_samples", | |
| type=int, | |
| default=None, | |
| help=( | |
| "For debugging purposes or quicker training, truncate the number of training examples to this " | |
| "value if set." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--proportion_empty_prompts", | |
| type=float, | |
| default=0, | |
| help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).", | |
| ) | |
| parser.add_argument( | |
| "--output_dir", | |
| type=str, | |
| default="sdxl-model-finetuned", | |
| help="The output directory where the model predictions and checkpoints will be written.", | |
| ) | |
| parser.add_argument( | |
| "--cache_dir", | |
| type=str, | |
| default=None, | |
| help="The directory where the downloaded models and datasets will be stored.", | |
| ) | |
| parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") | |
| parser.add_argument( | |
| "--resolution", | |
| type=int, | |
| default=1024, | |
| help=( | |
| "The resolution for input images, all the images in the train/validation dataset will be resized to this" | |
| " resolution" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--center_crop", | |
| default=False, | |
| action="store_true", | |
| help=( | |
| "Whether to center crop the input images to the resolution. If not set, the images will be randomly" | |
| " cropped. The images will be resized to the resolution first before cropping." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--random_flip", | |
| action="store_true", | |
| help="whether to randomly flip images horizontally", | |
| ) | |
| parser.add_argument( | |
| "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." | |
| ) | |
| parser.add_argument("--num_train_epochs", type=int, default=100) | |
| parser.add_argument( | |
| "--max_train_steps", | |
| type=int, | |
| default=None, | |
| help="Total number of training steps to perform. If provided, overrides num_train_epochs.", | |
| ) | |
| parser.add_argument( | |
| "--checkpointing_steps", | |
| type=int, | |
| default=500, | |
| help=( | |
| "Save a checkpoint of the training state every X updates. These checkpoints can be used both as final" | |
| " checkpoints in case they are better than the last checkpoint, and are also suitable for resuming" | |
| " training using `--resume_from_checkpoint`." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--checkpoints_total_limit", | |
| type=int, | |
| default=None, | |
| help=("Max number of checkpoints to store."), | |
| ) | |
| parser.add_argument( | |
| "--resume_from_checkpoint", | |
| type=str, | |
| default=None, | |
| help=( | |
| "Whether training should be resumed from a previous checkpoint. Use a path saved by" | |
| ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--gradient_accumulation_steps", | |
| type=int, | |
| default=1, | |
| help="Number of updates steps to accumulate before performing a backward/update pass.", | |
| ) | |
| parser.add_argument( | |
| "--gradient_checkpointing", | |
| action="store_true", | |
| help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", | |
| ) | |
| parser.add_argument( | |
| "--learning_rate", | |
| type=float, | |
| default=1e-4, | |
| help="Initial learning rate (after the potential warmup period) to use.", | |
| ) | |
| parser.add_argument( | |
| "--scale_lr", | |
| action="store_true", | |
| default=False, | |
| help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", | |
| ) | |
| parser.add_argument( | |
| "--lr_scheduler", | |
| type=str, | |
| default="constant", | |
| help=( | |
| 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' | |
| ' "constant", "constant_with_warmup"]' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." | |
| ) | |
| parser.add_argument( | |
| "--timestep_bias_strategy", | |
| type=str, | |
| default="none", | |
| choices=["earlier", "later", "range", "none"], | |
| help=( | |
| "The timestep bias strategy, which may help direct the model toward learning low or high frequency details." | |
| " Choices: ['earlier', 'later', 'range', 'none']." | |
| " The default is 'none', which means no bias is applied, and training proceeds normally." | |
| " The value of 'later' will increase the frequency of the model's final training timesteps." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--timestep_bias_multiplier", | |
| type=float, | |
| default=1.0, | |
| help=( | |
| "The multiplier for the bias. Defaults to 1.0, which means no bias is applied." | |
| " A value of 2.0 will double the weight of the bias, and a value of 0.5 will halve it." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--timestep_bias_begin", | |
| type=int, | |
| default=0, | |
| help=( | |
| "When using `--timestep_bias_strategy=range`, the beginning (inclusive) timestep to bias." | |
| " Defaults to zero, which equates to having no specific bias." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--timestep_bias_end", | |
| type=int, | |
| default=1000, | |
| help=( | |
| "When using `--timestep_bias_strategy=range`, the final timestep (inclusive) to bias." | |
| " Defaults to 1000, which is the number of timesteps that Stable Diffusion is trained on." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--timestep_bias_portion", | |
| type=float, | |
| default=0.25, | |
| help=( | |
| "The portion of timesteps to bias. Defaults to 0.25, which 25% of timesteps will be biased." | |
| " A value of 0.5 will bias one half of the timesteps. The value provided for `--timestep_bias_strategy` determines" | |
| " whether the biased portions are in the earlier or later timesteps." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--snr_gamma", | |
| type=float, | |
| default=None, | |
| help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " | |
| "More details here: https://huggingface.co/papers/2303.09556.", | |
| ) | |
| parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") | |
| parser.add_argument( | |
| "--allow_tf32", | |
| action="store_true", | |
| help=( | |
| "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" | |
| " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--dataloader_num_workers", | |
| type=int, | |
| default=0, | |
| help=( | |
| "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." | |
| ) | |
| parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") | |
| parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") | |
| parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") | |
| parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
| parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") | |
| parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") | |
| parser.add_argument( | |
| "--prediction_type", | |
| type=str, | |
| default=None, | |
| help="The prediction_type that shall be used for training. Choose between 'epsilon' or 'v_prediction' or leave `None`. If left to `None` the default prediction type of the scheduler: `noise_scheduler.config.prediction_type` is chosen.", | |
| ) | |
| parser.add_argument( | |
| "--hub_model_id", | |
| type=str, | |
| default=None, | |
| help="The name of the repository to keep in sync with the local `output_dir`.", | |
| ) | |
| parser.add_argument( | |
| "--logging_dir", | |
| type=str, | |
| default="logs", | |
| help=( | |
| "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" | |
| " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--report_to", | |
| type=str, | |
| default="tensorboard", | |
| help=( | |
| 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' | |
| ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' | |
| ), | |
| ) | |
| parser.add_argument( | |
| "--mixed_precision", | |
| type=str, | |
| default=None, | |
| choices=["no", "fp16", "bf16"], | |
| help=( | |
| "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" | |
| " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" | |
| " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." | |
| ), | |
| ) | |
| parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") | |
| parser.add_argument( | |
| "--enable_npu_flash_attention", action="store_true", help="Whether or not to use npu flash attention." | |
| ) | |
| parser.add_argument( | |
| "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." | |
| ) | |
| parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.") | |
| parser.add_argument( | |
| "--image_interpolation_mode", | |
| type=str, | |
| default="lanczos", | |
| choices=[ | |
| f.lower() for f in dir(transforms.InterpolationMode) if not f.startswith("__") and not f.endswith("__") | |
| ], | |
| help="The image interpolation method to use for resizing images.", | |
| ) | |
| if input_args is not None: | |
| args = parser.parse_args(input_args) | |
| else: | |
| args = parser.parse_args() | |
| env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) | |
| if env_local_rank != -1 and env_local_rank != args.local_rank: | |
| args.local_rank = env_local_rank | |
| # Sanity checks | |
| if args.dataset_name is None and args.train_data_dir is None: | |
| raise ValueError("Need either a dataset name or a training folder.") | |
| if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1: | |
| raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].") | |
| return args | |
| # Adapted from pipelines.StableDiffusionXLPipeline.encode_prompt | |
| def encode_prompt(batch, text_encoders, tokenizers, proportion_empty_prompts, caption_column, is_train=True): | |
| prompt_embeds_list = [] | |
| prompt_batch = batch[caption_column] | |
| captions = [] | |
| for caption in prompt_batch: | |
| if random.random() < proportion_empty_prompts: | |
| captions.append("") | |
| elif isinstance(caption, str): | |
| captions.append(caption) | |
| elif isinstance(caption, (list, np.ndarray)): | |
| # take a random caption if there are multiple | |
| captions.append(random.choice(caption) if is_train else caption[0]) | |
| with torch.no_grad(): | |
| for tokenizer, text_encoder in zip(tokenizers, text_encoders): | |
| text_inputs = tokenizer( | |
| captions, | |
| padding="max_length", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| prompt_embeds = text_encoder( | |
| text_input_ids.to(text_encoder.device), | |
| output_hidden_states=True, | |
| return_dict=False, | |
| ) | |
| # We are only ALWAYS interested in the pooled output of the final text encoder | |
| pooled_prompt_embeds = prompt_embeds[0] | |
| prompt_embeds = prompt_embeds[-1][-2] | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| prompt_embeds = prompt_embeds.view(bs_embed, seq_len, -1) | |
| prompt_embeds_list.append(prompt_embeds) | |
| prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | |
| pooled_prompt_embeds = pooled_prompt_embeds.view(bs_embed, -1) | |
| return {"prompt_embeds": prompt_embeds.cpu(), "pooled_prompt_embeds": pooled_prompt_embeds.cpu()} | |
| def compute_vae_encodings(batch, vae): | |
| images = batch.pop("pixel_values") | |
| pixel_values = torch.stack(list(images)) | |
| pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() | |
| pixel_values = pixel_values.to(vae.device, dtype=vae.dtype) | |
| with torch.no_grad(): | |
| model_input = vae.encode(pixel_values).latent_dist.sample() | |
| model_input = model_input * vae.config.scaling_factor | |
| # There might have slightly performance improvement | |
| # by changing model_input.cpu() to accelerator.gather(model_input) | |
| return {"model_input": model_input.cpu()} | |
| def generate_timestep_weights(args, num_timesteps): | |
| weights = torch.ones(num_timesteps) | |
| # Determine the indices to bias | |
| num_to_bias = int(args.timestep_bias_portion * num_timesteps) | |
| if args.timestep_bias_strategy == "later": | |
| bias_indices = slice(-num_to_bias, None) | |
| elif args.timestep_bias_strategy == "earlier": | |
| bias_indices = slice(0, num_to_bias) | |
| elif args.timestep_bias_strategy == "range": | |
| # Out of the possible 1000 timesteps, we might want to focus on eg. 200-500. | |
| range_begin = args.timestep_bias_begin | |
| range_end = args.timestep_bias_end | |
| if range_begin < 0: | |
| raise ValueError( | |
| "When using the range strategy for timestep bias, you must provide a beginning timestep greater or equal to zero." | |
| ) | |
| if range_end > num_timesteps: | |
| raise ValueError( | |
| "When using the range strategy for timestep bias, you must provide an ending timestep smaller than the number of timesteps." | |
| ) | |
| bias_indices = slice(range_begin, range_end) | |
| else: # 'none' or any other string | |
| return weights | |
| if args.timestep_bias_multiplier <= 0: | |
| return ValueError( | |
| "The parameter --timestep_bias_multiplier is not intended to be used to disable the training of specific timesteps." | |
| " If it was intended to disable timestep bias, use `--timestep_bias_strategy none` instead." | |
| " A timestep bias multiplier less than or equal to 0 is not allowed." | |
| ) | |
| # Apply the bias | |
| weights[bias_indices] *= args.timestep_bias_multiplier | |
| # Normalize | |
| weights /= weights.sum() | |
| return weights | |
| def main(args): | |
| if args.report_to == "wandb" and args.hub_token is not None: | |
| raise ValueError( | |
| "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token." | |
| " Please use `hf auth login` to authenticate with the Hub." | |
| ) | |
| logging_dir = Path(args.output_dir, args.logging_dir) | |
| accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
| if torch.backends.mps.is_available() and args.mixed_precision == "bf16": | |
| # due to pytorch#99272, MPS does not yet support bfloat16. | |
| raise ValueError( | |
| "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead." | |
| ) | |
| accelerator = Accelerator( | |
| gradient_accumulation_steps=args.gradient_accumulation_steps, | |
| mixed_precision=args.mixed_precision, | |
| log_with=args.report_to, | |
| project_config=accelerator_project_config, | |
| ) | |
| # Disable AMP for MPS. | |
| if torch.backends.mps.is_available(): | |
| accelerator.native_amp = False | |
| if args.report_to == "wandb": | |
| if not is_wandb_available(): | |
| raise ImportError("Make sure to install wandb if you want to use it for logging during training.") | |
| import wandb | |
| # Make one log on every process with the configuration for debugging. | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| logger.info(accelerator.state, main_process_only=False) | |
| if accelerator.is_local_main_process: | |
| datasets.utils.logging.set_verbosity_warning() | |
| transformers.utils.logging.set_verbosity_warning() | |
| diffusers.utils.logging.set_verbosity_info() | |
| else: | |
| datasets.utils.logging.set_verbosity_error() | |
| transformers.utils.logging.set_verbosity_error() | |
| diffusers.utils.logging.set_verbosity_error() | |
| # If passed along, set the training seed now. | |
| if args.seed is not None: | |
| set_seed(args.seed) | |
| # Handle the repository creation | |
| if accelerator.is_main_process: | |
| if args.output_dir is not None: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| if args.push_to_hub: | |
| repo_id = create_repo( | |
| repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token | |
| ).repo_id | |
| # Load the tokenizers | |
| tokenizer_one = AutoTokenizer.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| subfolder="tokenizer", | |
| revision=args.revision, | |
| use_fast=False, | |
| ) | |
| tokenizer_two = AutoTokenizer.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| subfolder="tokenizer_2", | |
| revision=args.revision, | |
| use_fast=False, | |
| ) | |
| # import correct text encoder classes | |
| text_encoder_cls_one = import_model_class_from_model_name_or_path( | |
| args.pretrained_model_name_or_path, args.revision | |
| ) | |
| text_encoder_cls_two = import_model_class_from_model_name_or_path( | |
| args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2" | |
| ) | |
| # Load scheduler and models | |
| noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") | |
| # Check for terminal SNR in combination with SNR Gamma | |
| text_encoder_one = text_encoder_cls_one.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant | |
| ) | |
| text_encoder_two = text_encoder_cls_two.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant | |
| ) | |
| vae_path = ( | |
| args.pretrained_model_name_or_path | |
| if args.pretrained_vae_model_name_or_path is None | |
| else args.pretrained_vae_model_name_or_path | |
| ) | |
| vae = AutoencoderKL.from_pretrained( | |
| vae_path, | |
| subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, | |
| revision=args.revision, | |
| variant=args.variant, | |
| ) | |
| unet = UNet2DConditionModel.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant | |
| ) | |
| # Freeze vae and text encoders. | |
| vae.requires_grad_(False) | |
| text_encoder_one.requires_grad_(False) | |
| text_encoder_two.requires_grad_(False) | |
| # Set unet as trainable. | |
| unet.train() | |
| # For mixed precision training we cast all non-trainable weights to half-precision | |
| # as these weights are only used for inference, keeping weights in full precision is not required. | |
| weight_dtype = torch.float32 | |
| if accelerator.mixed_precision == "fp16": | |
| weight_dtype = torch.float16 | |
| elif accelerator.mixed_precision == "bf16": | |
| weight_dtype = torch.bfloat16 | |
| # Move unet, vae and text_encoder to device and cast to weight_dtype | |
| # The VAE is in float32 to avoid NaN losses. | |
| vae.to(accelerator.device, dtype=torch.float32) | |
| text_encoder_one.to(accelerator.device, dtype=weight_dtype) | |
| text_encoder_two.to(accelerator.device, dtype=weight_dtype) | |
| # Create EMA for the unet. | |
| if args.use_ema: | |
| ema_unet = UNet2DConditionModel.from_pretrained( | |
| args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant | |
| ) | |
| ema_unet = EMAModel(ema_unet.parameters(), model_cls=UNet2DConditionModel, model_config=ema_unet.config) | |
| if args.enable_npu_flash_attention: | |
| if is_torch_npu_available(): | |
| logger.info("npu flash attention enabled.") | |
| unet.enable_npu_flash_attention() | |
| else: | |
| raise ValueError("npu flash attention requires torch_npu extensions and is supported only on npu devices.") | |
| if args.enable_xformers_memory_efficient_attention: | |
| if is_xformers_available(): | |
| import xformers | |
| xformers_version = version.parse(xformers.__version__) | |
| if xformers_version == version.parse("0.0.16"): | |
| logger.warning( | |
| "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." | |
| ) | |
| unet.enable_xformers_memory_efficient_attention() | |
| else: | |
| raise ValueError("xformers is not available. Make sure it is installed correctly") | |
| # `accelerate` 0.16.0 will have better support for customized saving | |
| if version.parse(accelerate.__version__) >= version.parse("0.16.0"): | |
| # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format | |
| def save_model_hook(models, weights, output_dir): | |
| if accelerator.is_main_process: | |
| if args.use_ema: | |
| ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema")) | |
| for i, model in enumerate(models): | |
| model.save_pretrained(os.path.join(output_dir, "unet")) | |
| # make sure to pop weight so that corresponding model is not saved again | |
| if weights: | |
| weights.pop() | |
| def load_model_hook(models, input_dir): | |
| if args.use_ema: | |
| load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DConditionModel) | |
| ema_unet.load_state_dict(load_model.state_dict()) | |
| ema_unet.to(accelerator.device) | |
| del load_model | |
| for _ in range(len(models)): | |
| # pop models so that they are not loaded again | |
| model = models.pop() | |
| # load diffusers style into model | |
| load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") | |
| model.register_to_config(**load_model.config) | |
| model.load_state_dict(load_model.state_dict()) | |
| del load_model | |
| accelerator.register_save_state_pre_hook(save_model_hook) | |
| accelerator.register_load_state_pre_hook(load_model_hook) | |
| if args.gradient_checkpointing: | |
| unet.enable_gradient_checkpointing() | |
| # Enable TF32 for faster training on Ampere GPUs, | |
| # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
| if args.allow_tf32: | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| if args.scale_lr: | |
| args.learning_rate = ( | |
| args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
| ) | |
| # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | |
| if args.use_8bit_adam: | |
| try: | |
| import bitsandbytes as bnb | |
| except ImportError: | |
| raise ImportError( | |
| "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
| ) | |
| optimizer_class = bnb.optim.AdamW8bit | |
| else: | |
| optimizer_class = torch.optim.AdamW | |
| # Optimizer creation | |
| params_to_optimize = unet.parameters() | |
| optimizer = optimizer_class( | |
| params_to_optimize, | |
| lr=args.learning_rate, | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| weight_decay=args.adam_weight_decay, | |
| eps=args.adam_epsilon, | |
| ) | |
| # Get the datasets: you can either provide your own training and evaluation files (see below) | |
| # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). | |
| # In distributed training, the load_dataset function guarantees that only one local process can concurrently | |
| # download the dataset. | |
| if args.dataset_name is not None: | |
| # Downloading and loading a dataset from the hub. | |
| dataset = load_dataset( | |
| args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, data_dir=args.train_data_dir | |
| ) | |
| else: | |
| data_files = {} | |
| if args.train_data_dir is not None: | |
| data_files["train"] = os.path.join(args.train_data_dir, "**") | |
| dataset = load_dataset( | |
| "imagefolder", | |
| data_files=data_files, | |
| cache_dir=args.cache_dir, | |
| ) | |
| # See more about loading custom images at | |
| # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder | |
| # Preprocessing the datasets. | |
| # We need to tokenize inputs and targets. | |
| column_names = dataset["train"].column_names | |
| # 6. Get the column names for input/target. | |
| dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None) | |
| if args.image_column is None: | |
| image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] | |
| else: | |
| image_column = args.image_column | |
| if image_column not in column_names: | |
| raise ValueError( | |
| f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}" | |
| ) | |
| if args.caption_column is None: | |
| caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1] | |
| else: | |
| caption_column = args.caption_column | |
| if caption_column not in column_names: | |
| raise ValueError( | |
| f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}" | |
| ) | |
| # Preprocessing the datasets. | |
| interpolation = getattr(transforms.InterpolationMode, args.image_interpolation_mode.upper(), None) | |
| if interpolation is None: | |
| raise ValueError(f"Unsupported interpolation mode {interpolation=}.") | |
| train_resize = transforms.Resize(args.resolution, interpolation=interpolation) | |
| train_crop = transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution) | |
| train_flip = transforms.RandomHorizontalFlip(p=1.0) | |
| train_transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]) | |
| def preprocess_train(examples): | |
| images = [image.convert("RGB") for image in examples[image_column]] | |
| # image aug | |
| original_sizes = [] | |
| all_images = [] | |
| crop_top_lefts = [] | |
| for image in images: | |
| original_sizes.append((image.height, image.width)) | |
| image = train_resize(image) | |
| if args.random_flip and random.random() < 0.5: | |
| # flip | |
| image = train_flip(image) | |
| if args.center_crop: | |
| y1 = max(0, int(round((image.height - args.resolution) / 2.0))) | |
| x1 = max(0, int(round((image.width - args.resolution) / 2.0))) | |
| image = train_crop(image) | |
| else: | |
| y1, x1, h, w = train_crop.get_params(image, (args.resolution, args.resolution)) | |
| image = crop(image, y1, x1, h, w) | |
| crop_top_left = (y1, x1) | |
| crop_top_lefts.append(crop_top_left) | |
| image = train_transforms(image) | |
| all_images.append(image) | |
| examples["original_sizes"] = original_sizes | |
| examples["crop_top_lefts"] = crop_top_lefts | |
| examples["pixel_values"] = all_images | |
| return examples | |
| with accelerator.main_process_first(): | |
| if args.max_train_samples is not None: | |
| dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) | |
| # Set the training transforms | |
| train_dataset = dataset["train"].with_transform(preprocess_train) | |
| # Let's first compute all the embeddings so that we can free up the text encoders | |
| # from memory. We will pre-compute the VAE encodings too. | |
| text_encoders = [text_encoder_one, text_encoder_two] | |
| tokenizers = [tokenizer_one, tokenizer_two] | |
| compute_embeddings_fn = functools.partial( | |
| encode_prompt, | |
| text_encoders=text_encoders, | |
| tokenizers=tokenizers, | |
| proportion_empty_prompts=args.proportion_empty_prompts, | |
| caption_column=args.caption_column, | |
| ) | |
| compute_vae_encodings_fn = functools.partial(compute_vae_encodings, vae=vae) | |
| with accelerator.main_process_first(): | |
| from datasets.fingerprint import Hasher | |
| # fingerprint used by the cache for the other processes to load the result | |
| # details: https://github.com/huggingface/diffusers/pull/4038#discussion_r1266078401 | |
| new_fingerprint = Hasher.hash(args) | |
| new_fingerprint_for_vae = Hasher.hash((vae_path, args)) | |
| train_dataset_with_embeddings = train_dataset.map( | |
| compute_embeddings_fn, batched=True, new_fingerprint=new_fingerprint | |
| ) | |
| train_dataset_with_vae = train_dataset.map( | |
| compute_vae_encodings_fn, | |
| batched=True, | |
| batch_size=args.train_batch_size, | |
| new_fingerprint=new_fingerprint_for_vae, | |
| ) | |
| precomputed_dataset = concatenate_datasets( | |
| [train_dataset_with_embeddings, train_dataset_with_vae.remove_columns(["image", "text"])], axis=1 | |
| ) | |
| precomputed_dataset = precomputed_dataset.with_transform(preprocess_train) | |
| del compute_vae_encodings_fn, compute_embeddings_fn, text_encoder_one, text_encoder_two | |
| del text_encoders, tokenizers, vae | |
| gc.collect() | |
| if is_torch_npu_available(): | |
| torch_npu.npu.empty_cache() | |
| elif torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| def collate_fn(examples): | |
| model_input = torch.stack([torch.tensor(example["model_input"]) for example in examples]) | |
| original_sizes = [example["original_sizes"] for example in examples] | |
| crop_top_lefts = [example["crop_top_lefts"] for example in examples] | |
| prompt_embeds = torch.stack([torch.tensor(example["prompt_embeds"]) for example in examples]) | |
| pooled_prompt_embeds = torch.stack([torch.tensor(example["pooled_prompt_embeds"]) for example in examples]) | |
| return { | |
| "model_input": model_input, | |
| "prompt_embeds": prompt_embeds, | |
| "pooled_prompt_embeds": pooled_prompt_embeds, | |
| "original_sizes": original_sizes, | |
| "crop_top_lefts": crop_top_lefts, | |
| } | |
| # DataLoaders creation: | |
| train_dataloader = torch.utils.data.DataLoader( | |
| precomputed_dataset, | |
| shuffle=True, | |
| collate_fn=collate_fn, | |
| batch_size=args.train_batch_size, | |
| num_workers=args.dataloader_num_workers, | |
| ) | |
| # Scheduler and math around the number of training steps. | |
| overrode_max_train_steps = False | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if args.max_train_steps is None: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| overrode_max_train_steps = True | |
| lr_scheduler = get_scheduler( | |
| args.lr_scheduler, | |
| optimizer=optimizer, | |
| num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, | |
| num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, | |
| ) | |
| # Prepare everything with our `accelerator`. | |
| unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
| unet, optimizer, train_dataloader, lr_scheduler | |
| ) | |
| if args.use_ema: | |
| ema_unet.to(accelerator.device) | |
| # We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if overrode_max_train_steps: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| # Afterwards we recalculate our number of training epochs | |
| args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| # We need to initialize the trackers we use, and also store our configuration. | |
| # The trackers initializes automatically on the main process. | |
| if accelerator.is_main_process: | |
| accelerator.init_trackers("text2image-fine-tune-sdxl", config=vars(args)) | |
| # Function for unwrapping if torch.compile() was used in accelerate. | |
| def unwrap_model(model): | |
| model = accelerator.unwrap_model(model) | |
| model = model._orig_mod if is_compiled_module(model) else model | |
| return model | |
| if torch.backends.mps.is_available() or "playground" in args.pretrained_model_name_or_path: | |
| autocast_ctx = nullcontext() | |
| else: | |
| autocast_ctx = torch.autocast(accelerator.device.type) | |
| # Train! | |
| total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num examples = {len(precomputed_dataset)}") | |
| logger.info(f" Num Epochs = {args.num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
| logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
| logger.info(f" Total optimization steps = {args.max_train_steps}") | |
| global_step = 0 | |
| first_epoch = 0 | |
| # Potentially load in the weights and states from a previous save | |
| if args.resume_from_checkpoint: | |
| if args.resume_from_checkpoint != "latest": | |
| path = os.path.basename(args.resume_from_checkpoint) | |
| else: | |
| # Get the most recent checkpoint | |
| dirs = os.listdir(args.output_dir) | |
| dirs = [d for d in dirs if d.startswith("checkpoint")] | |
| dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
| path = dirs[-1] if len(dirs) > 0 else None | |
| if path is None: | |
| accelerator.print( | |
| f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
| ) | |
| args.resume_from_checkpoint = None | |
| initial_global_step = 0 | |
| else: | |
| accelerator.print(f"Resuming from checkpoint {path}") | |
| accelerator.load_state(os.path.join(args.output_dir, path)) | |
| global_step = int(path.split("-")[1]) | |
| initial_global_step = global_step | |
| first_epoch = global_step // num_update_steps_per_epoch | |
| else: | |
| initial_global_step = 0 | |
| progress_bar = tqdm( | |
| range(0, args.max_train_steps), | |
| initial=initial_global_step, | |
| desc="Steps", | |
| # Only show the progress bar once on each machine. | |
| disable=not accelerator.is_local_main_process, | |
| ) | |
| for epoch in range(first_epoch, args.num_train_epochs): | |
| train_loss = 0.0 | |
| for step, batch in enumerate(train_dataloader): | |
| with accelerator.accumulate(unet): | |
| # Sample noise that we'll add to the latents | |
| model_input = batch["model_input"].to(accelerator.device) | |
| noise = torch.randn_like(model_input) | |
| if args.noise_offset: | |
| # https://www.crosslabs.org//blog/diffusion-with-offset-noise | |
| noise += args.noise_offset * torch.randn( | |
| (model_input.shape[0], model_input.shape[1], 1, 1), device=model_input.device | |
| ) | |
| bsz = model_input.shape[0] | |
| if args.timestep_bias_strategy == "none": | |
| # Sample a random timestep for each image without bias. | |
| timesteps = torch.randint( | |
| 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device | |
| ) | |
| else: | |
| # Sample a random timestep for each image, potentially biased by the timestep weights. | |
| # Biasing the timestep weights allows us to spend less time training irrelevant timesteps. | |
| weights = generate_timestep_weights(args, noise_scheduler.config.num_train_timesteps).to( | |
| model_input.device | |
| ) | |
| timesteps = torch.multinomial(weights, bsz, replacement=True).long() | |
| # Add noise to the model input according to the noise magnitude at each timestep | |
| # (this is the forward diffusion process) | |
| noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps).to(dtype=weight_dtype) | |
| # time ids | |
| def compute_time_ids(original_size, crops_coords_top_left): | |
| # Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids | |
| target_size = (args.resolution, args.resolution) | |
| add_time_ids = list(original_size + crops_coords_top_left + target_size) | |
| add_time_ids = torch.tensor([add_time_ids], device=accelerator.device, dtype=weight_dtype) | |
| return add_time_ids | |
| add_time_ids = torch.cat( | |
| [compute_time_ids(s, c) for s, c in zip(batch["original_sizes"], batch["crop_top_lefts"])] | |
| ) | |
| # Predict the noise residual | |
| unet_added_conditions = {"time_ids": add_time_ids} | |
| prompt_embeds = batch["prompt_embeds"].to(accelerator.device, dtype=weight_dtype) | |
| pooled_prompt_embeds = batch["pooled_prompt_embeds"].to(accelerator.device) | |
| unet_added_conditions.update({"text_embeds": pooled_prompt_embeds}) | |
| model_pred = unet( | |
| noisy_model_input, | |
| timesteps, | |
| prompt_embeds, | |
| added_cond_kwargs=unet_added_conditions, | |
| return_dict=False, | |
| )[0] | |
| # Get the target for loss depending on the prediction type | |
| if args.prediction_type is not None: | |
| # set prediction_type of scheduler if defined | |
| noise_scheduler.register_to_config(prediction_type=args.prediction_type) | |
| if noise_scheduler.config.prediction_type == "epsilon": | |
| target = noise | |
| elif noise_scheduler.config.prediction_type == "v_prediction": | |
| target = noise_scheduler.get_velocity(model_input, noise, timesteps) | |
| elif noise_scheduler.config.prediction_type == "sample": | |
| # We set the target to latents here, but the model_pred will return the noise sample prediction. | |
| target = model_input | |
| # We will have to subtract the noise residual from the prediction to get the target sample. | |
| model_pred = model_pred - noise | |
| else: | |
| raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
| if args.snr_gamma is None: | |
| loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | |
| else: | |
| # Compute loss-weights as per Section 3.4 of https://huggingface.co/papers/2303.09556. | |
| # Since we predict the noise instead of x_0, the original formulation is slightly changed. | |
| # This is discussed in Section 4.2 of the same paper. | |
| snr = compute_snr(noise_scheduler, timesteps) | |
| mse_loss_weights = torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min( | |
| dim=1 | |
| )[0] | |
| if noise_scheduler.config.prediction_type == "epsilon": | |
| mse_loss_weights = mse_loss_weights / snr | |
| elif noise_scheduler.config.prediction_type == "v_prediction": | |
| mse_loss_weights = mse_loss_weights / (snr + 1) | |
| loss = F.mse_loss(model_pred.float(), target.float(), reduction="none") | |
| loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights | |
| loss = loss.mean() | |
| # Gather the losses across all processes for logging (if we use distributed training). | |
| avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() | |
| train_loss += avg_loss.item() / args.gradient_accumulation_steps | |
| # Backpropagate | |
| accelerator.backward(loss) | |
| if accelerator.sync_gradients: | |
| params_to_clip = unet.parameters() | |
| accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm) | |
| optimizer.step() | |
| lr_scheduler.step() | |
| optimizer.zero_grad() | |
| # Checks if the accelerator has performed an optimization step behind the scenes | |
| if accelerator.sync_gradients: | |
| if args.use_ema: | |
| ema_unet.step(unet.parameters()) | |
| progress_bar.update(1) | |
| global_step += 1 | |
| accelerator.log({"train_loss": train_loss}, step=global_step) | |
| train_loss = 0.0 | |
| # DeepSpeed requires saving weights on every device; saving weights only on the main process would cause issues. | |
| if accelerator.distributed_type == DistributedType.DEEPSPEED or accelerator.is_main_process: | |
| if global_step % args.checkpointing_steps == 0: | |
| # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
| if args.checkpoints_total_limit is not None: | |
| checkpoints = os.listdir(args.output_dir) | |
| checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
| checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
| # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
| if len(checkpoints) >= args.checkpoints_total_limit: | |
| num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
| removing_checkpoints = checkpoints[0:num_to_remove] | |
| logger.info( | |
| f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
| ) | |
| logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
| for removing_checkpoint in removing_checkpoints: | |
| removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
| shutil.rmtree(removing_checkpoint) | |
| save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
| accelerator.save_state(save_path) | |
| logger.info(f"Saved state to {save_path}") | |
| logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
| progress_bar.set_postfix(**logs) | |
| if global_step >= args.max_train_steps: | |
| break | |
| if accelerator.is_main_process: | |
| if args.validation_prompt is not None and epoch % args.validation_epochs == 0: | |
| logger.info( | |
| f"Running validation... \n Generating {args.num_validation_images} images with prompt:" | |
| f" {args.validation_prompt}." | |
| ) | |
| if args.use_ema: | |
| # Store the UNet parameters temporarily and load the EMA parameters to perform inference. | |
| ema_unet.store(unet.parameters()) | |
| ema_unet.copy_to(unet.parameters()) | |
| # create pipeline | |
| vae = AutoencoderKL.from_pretrained( | |
| vae_path, | |
| subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, | |
| revision=args.revision, | |
| variant=args.variant, | |
| ) | |
| pipeline = StableDiffusionXLPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| vae=vae, | |
| unet=accelerator.unwrap_model(unet), | |
| revision=args.revision, | |
| variant=args.variant, | |
| torch_dtype=weight_dtype, | |
| ) | |
| if args.prediction_type is not None: | |
| scheduler_args = {"prediction_type": args.prediction_type} | |
| pipeline.scheduler = pipeline.scheduler.from_config(pipeline.scheduler.config, **scheduler_args) | |
| pipeline = pipeline.to(accelerator.device) | |
| pipeline.set_progress_bar_config(disable=True) | |
| # run inference | |
| generator = ( | |
| torch.Generator(device=accelerator.device).manual_seed(args.seed) | |
| if args.seed is not None | |
| else None | |
| ) | |
| pipeline_args = {"prompt": args.validation_prompt} | |
| with autocast_ctx: | |
| images = [ | |
| pipeline(**pipeline_args, generator=generator, num_inference_steps=25).images[0] | |
| for _ in range(args.num_validation_images) | |
| ] | |
| for tracker in accelerator.trackers: | |
| if tracker.name == "tensorboard": | |
| np_images = np.stack([np.asarray(img) for img in images]) | |
| tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC") | |
| if tracker.name == "wandb": | |
| tracker.log( | |
| { | |
| "validation": [ | |
| wandb.Image(image, caption=f"{i}: {args.validation_prompt}") | |
| for i, image in enumerate(images) | |
| ] | |
| } | |
| ) | |
| del pipeline | |
| if is_torch_npu_available(): | |
| torch_npu.npu.empty_cache() | |
| elif torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| if args.use_ema: | |
| # Switch back to the original UNet parameters. | |
| ema_unet.restore(unet.parameters()) | |
| accelerator.wait_for_everyone() | |
| if accelerator.is_main_process: | |
| unet = unwrap_model(unet) | |
| if args.use_ema: | |
| ema_unet.copy_to(unet.parameters()) | |
| # Serialize pipeline. | |
| vae = AutoencoderKL.from_pretrained( | |
| vae_path, | |
| subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None, | |
| revision=args.revision, | |
| variant=args.variant, | |
| torch_dtype=weight_dtype, | |
| ) | |
| pipeline = StableDiffusionXLPipeline.from_pretrained( | |
| args.pretrained_model_name_or_path, | |
| unet=unet, | |
| vae=vae, | |
| revision=args.revision, | |
| variant=args.variant, | |
| torch_dtype=weight_dtype, | |
| ) | |
| if args.prediction_type is not None: | |
| scheduler_args = {"prediction_type": args.prediction_type} | |
| pipeline.scheduler = pipeline.scheduler.from_config(pipeline.scheduler.config, **scheduler_args) | |
| pipeline.save_pretrained(args.output_dir) | |
| # run inference | |
| images = [] | |
| if args.validation_prompt and args.num_validation_images > 0: | |
| pipeline = pipeline.to(accelerator.device) | |
| generator = ( | |
| torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed is not None else None | |
| ) | |
| with autocast_ctx: | |
| images = [ | |
| pipeline(args.validation_prompt, num_inference_steps=25, generator=generator).images[0] | |
| for _ in range(args.num_validation_images) | |
| ] | |
| for tracker in accelerator.trackers: | |
| if tracker.name == "tensorboard": | |
| np_images = np.stack([np.asarray(img) for img in images]) | |
| tracker.writer.add_images("test", np_images, epoch, dataformats="NHWC") | |
| if tracker.name == "wandb": | |
| tracker.log( | |
| { | |
| "test": [ | |
| wandb.Image(image, caption=f"{i}: {args.validation_prompt}") | |
| for i, image in enumerate(images) | |
| ] | |
| } | |
| ) | |
| if args.push_to_hub: | |
| save_model_card( | |
| repo_id=repo_id, | |
| images=images, | |
| validation_prompt=args.validation_prompt, | |
| base_model=args.pretrained_model_name_or_path, | |
| dataset_name=args.dataset_name, | |
| repo_folder=args.output_dir, | |
| vae_path=args.pretrained_vae_model_name_or_path, | |
| ) | |
| upload_folder( | |
| repo_id=repo_id, | |
| folder_path=args.output_dir, | |
| commit_message="End of training", | |
| ignore_patterns=["step_*", "epoch_*"], | |
| ) | |
| accelerator.end_training() | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| main(args) |